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String theory and ML started about 7 years ago in Oxford TP . ..
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Fabian Ruehle Sven Krippendorf Yang-Hui He

A burst of activity since . . .

Fabian Ruehle: “Data Science Applications to String Theory”,
Phys. Rept. 839 (2020) 1-117.

Why might ML techniques be useful in string theory?



Some basic features of string theory

e String theory is a consistent theory which contains gauge theories
and (quantum) gravity.

e Buf it is defined in 10 space-time dimensions.

e To make contact with physics we need to compactify (“curl up”) 6

dimensions.

compactify on é6d manifold X, . ..

4d QFT




But we need to satisfy the (10d) Einstein equations, so X needs to carry
a metric with vanishing Ricci tensor.

Yaus theorem: “Ricci-flat metrics exist (and are unique under certain
extra conditions) on Calabi-Yau (CY) manifolds.”

bi-cubic

There is a huge number (100", 100" ) of possibilities for X,
all leading to 4d theories. Only a small fraction leads to theories close

to the correct one....

The 10d theory is (basically) unique, but the 4d theory depends on X.



How does the 4d theory depend on X?

topology : <\O/> or . ?

-> determines structure of 4d theory: forces, matter content, . ..
(Maths: Algebraic Geometry)

Many compactification of string theory known which lead to the forces
and particle content of the standard model (SM) of particle physics!

T

main focus so far -> example later

dape: (> ) o @ ?

-> determines couplings/particle masses in 4d theory
(Maths: Differential Geometry)

Can string theory also explain the couplings and masses in the SM?
“Can string theory explain the electron mass?”

T
to tackle this we need the Ricci-flat
metric g on X <-> shape




Coming back to: Why might ML methods be useful in string theory?

String theory contains large (mathematical) data sets, with
entries typically of the type “geometrical object -> topological
erty” -> supervised learning

main approach initially

e The huge “landscape” of string theory leads to large search
problems, e.g. for realistic models -> heuristic search methods
such as reinforcement learning and genetic algorithms

® The calculation of properties for any given compactification can
be hugely challenging.
- difficult algebraic computations -> supervised learning ??2?
- difficult differential computations -> solving diff. egs. with ML



Example 1: Supervised learning of line bundle cohomology

Line bundles L — X over CY manifolds can be labelled by integer

vector L = Ox (k) and their cohomology dimensions h?(X,Ox(k))
are hard to compute and of interest in string theory.

training set: {(k, h%(X, Ox(k))}

supervised learning works well, but: error unacceptable, hard to
verify (Fabian Ruehle 1706.07024)

More dedicated network, “opened up” allows for read-out of
formula. This supports a conjecture:
(Constantin, Lukas, 1808.09992, Brodie, Constantin, Lukas, 2010.06597)

Conjecture: (Line) bundle cohomology dimensions on n-dim. Kahler

manifolds are given by piecewise polynomial expressions
with polynomial degrees less equal n.



Example 2: Model search with RL or GAs

Basic idea:

environment, value/fitness of model measures how well it fits data

top down space of
possible models,

experimental model selection
data

typically large

bottom-up
often impossible

couple to

search algorithm:
reinforcement learning (RL), genetic algorithm (GA)




Applied to: heterotic CY models with flux (=bundles)

(A. Constantin, AL, T. Harvey, 2108.07316)
Consider bi-cubic CY X with flux = vector bundle V defined by

0V ->BLcoo V = Ker(f)

ro re “monad”
B=@P0Ox(b.,) C=EP0x(ca) rp—rc=4

2d integer vectors

A model is described by a 2 x (rp + r¢) integer matrix

{ (b1,.--,b7~B,Cl,.-.,Crc)} — environment

The particle content of a 4d model can be computed from this matrix.
(But it's complicated!)

Goal: Find models which lead to a SM spectrum -> Diophantine egs. in b,, c,

rg =95, rc =1

/

size of environment: ~ 102(re+rc) £ 1012



Example RL run for bi-cubic (actor-critic): rg =6, r¢ =2

Training: about 1h on a single CPU
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Results: O(500) candidate models -> 18 new models with SM spectrum
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Figure 6: Training metrics for the bicubic monad environment with (rg,r¢) = (6,2).

—  tstates ~ 101°



Example 3: Ricci-flat CY metrics from ML
(M. Larfors, AL, F. Ruehle, R. Schneider, 2211.010436, 2205.13408)

Not a single Ricci-flat metric on (compact, three-fold) CY known analytically ->
numerical methods

First consider lattice methods: (20 points/dim)® = 6.4 x 107 points

ML approach:

e Generate point sample (z;), ¢ =1,..., N, on CY X (self-supervised learning)

e Use fully-connected NN Fy

e Loss function L(# Z]Rlcm (z:))]? +

e Perform gradient descent



Training 1l

(3 hidden layer, width 64, GELU activation,(00000 points)each, Adam optimiser)
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Figure 2: Bi-cubic training curves for the seven choices of Kahler parameters in Table 2. The last plot
represents the final loss, obtained by averaging over the last 10 epochs, as a function of ¢2/t!
(orange: Lgclass, blue: 4 X Lyia, both on training data, light-blue: 4 X o measure on validation data).



What can we do with the Ricci-flat metric? -> Yukawa couplings
(A. Constantin, K. Fraser-Taliente, T. Harvey, AL, B. Ovrut 2402.01615)

For example, up-quark Yukawa couplings:

W, = Y4H"Q'U K =K Q'Q' + KLU'U’ + kH"H"
holomorphic Yukawa couplings, field space metric (Twave fct. normalisation”),
quasi-topological calculation requires Ricci-flat metric etc.

\/

physical Yukawa couplings

First full computation for a quasi-realistic string model, using ML:
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Conclusion

e ML techniques can be useful in string theory:
- supervised learning of math. data sets -> conjecture generating
- heuristic model searches in string landscape -> RL, GAs, . . .
- solving non-linear diff. eqs. om manifolds -> self-supervised

e Distant dream: Data science techniques will allow us o explore
the entire string landscape.

e Any implications for machine learning?

Thanks!



