
Probabilistic and 
Differentiable Programming for 
Scientific Discovery
Atılım Güneş Baydin
gunes@robots.ox.ac.uk

ML Nosh seminar
10 Mar 2025

Key collaborators:



2



Atılım Güneş Baydin
Lecturer in Department of Computer Science and Jesus College

Oxford AI for Science Lab

Funding:

● Specializing in probabilistic machine 
learning and scientific discovery

● Working with experts in high-energy 
physics, heliophysics, astrobiology, Earth 
science, space safety and other disciplines

● Solve challenging problems through 
application and development of AI 
methods

https://oxai4science.github.io 

https://oxai4science.github.io
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Outline

● Probabilistic programming and (scientific) simulators
○ Etalumis: existing simulators as probabilistic programs
○ Surrogates: replacing the simulator entirely

● Differentiable programming and simulators
○ When autodiff is not feasible
○ When autodiff is feasible

● Events and community



Probabilistic programming
and scientific simulators



Simulation and physical sciences
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Computational models and simulation are key to scientific advance at all scales

Climate science CosmologyWeatherDrug discovery

Nuclear physics Material designParticle physics
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● Simulate forward evolution of the system
● Generate samples of output

Prediction:

Parameters Outputs (data)

Simulator

Simulators
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● Simulate forward evolution of the system
● Generate samples of output
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Parameters Outputs (data)
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● Simulate forward evolution of the system
● Generate samples of output

Prediction:

WE NEED THE INVERSE!

Parameters Outputs (data)

Simulator

Simulators
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● Simulate forward evolution of the system
● Generate samples of output

Prediction:

● Find parameters that can produce (explain) observed data
● Inverse problem
● Often a manual process

Inference:

Parameters Outputs (data)

Simulator

Inverting simulators
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Parameters Outputs (data)

Simulator
Observed data

Inferred 
parameters

Event analyses &
new particle 
discoveries

Particle detector 
readings

Inverting simulators



Probabilistic programming is the perfect tool for this setting
● define generative model p(x, z) = p(x|z)p(z)
● run automated Bayesian inference of latent variables z 

conditioned on observed data x

Pyro Edward Stan

Parameters Outputs (data)

Simulator
Observed data

Inferred 
parameters

Inverting simulators

PyMC
p(z|x) = 

p(x|z) p(z)
p(x)

priorlikelihood

evidenceposterior



Probabilistic programming is the perfect tool for this setting
● define generative model p(x, z) = p(x|z)p(z)
● run automated Bayesian inference of latent variables z 

conditioned on observed data x

Pyro Edward Stan

Parameters Outputs (data)

Simulator
Observed data

Inferred 
parameters

Inverting simulators

PyMC
p(z|x) = 

p(x|z) p(z)
p(x)

priorlikelihood

evidenceposterior

● Somewhat limited to small-scale problems
● Normally requires one to implement a probabilistic 

model from scratch in the chosen language/system
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Key idea:
Many simulators are stochastic and they define probabilistic models
by sampling random numbers

Parameters Outputs (data)

Simulator
Observed data

Inferred 
parameters

Inverting simulators

Baydin et al. “Efficient Probabilistic Inference in the Quest for Physics Beyond the Standard Model” NeurIPS 2019
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Key idea:
Many simulators are stochastic and they define probabilistic models
by sampling random numbers

Simulators are probabilistic programs!
If we develop necessary techniques to execute them probabilistically

Parameters Outputs (data)

Simulator

Code

Observed data
Inferred 

parameters

Inverting simulators
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Parameters Outputs (data)

Simulator

Code

Observed data
Inferred 

parameters

Probabilistic
execution
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Parameters Outputs (data)

Simulator

Code

● Run forward & catch all random choices (“hijack” all calls to RNG)
● Record an execution trace: a record of all parameters, random choices, outputs

Observed data
Inferred 

parameters

Probabilistic Programming eXecution protocol
C++, C#, Dart, Go, Java, JavaScript, Lua, Python, Rust and others
Inspired by the Open Neural Network Exchange

Probabilistic
execution



18

Parameters Outputs (data)

Simulator

Code

● Run forward & catch all random choices (“hijack” all calls to RNG)
● Record an execution trace: a record of all parameters, random choices, outputs

○ Conditioning: compare simulated output and observed data
● Approximate the distribution of parameters that can produce (explain) 

observed data, using inference engines like Markov-chain Monte Carlo (MCMC)

Observed data
Inferred 

parameters

Probabilistic
execution
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Parameters Outputs (data)

Simulator

Code

● Run forward & catch all random choices (“hijack” all calls to RNG)
● Record an execution trace: a record of all parameters, random choices, outputs

○ Conditioning: compare simulated output and observed data
● Approximate the distribution of parameters that can produce (explain) 

observed data, using inference engines like Markov-chain Monte Carlo (MCMC)

Observed data
Inferred 

parameters

Simulators = giant probabilistic models so inference is hard and 
computationally costly
● Need to run simulator up to millions of times
● Simulator execution and MCMC inference are sequential
● MCMC has “burn-in period” and autocorrelation

But we can amortize the cost of inference using deep learning

Probabilistic
execution
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Amortized inference

Sim. Trace

Sim.
⋮

Distributed
data generation

Trace

Trace
⋮

Training data
(execution traces)

⋮

Distributed
training

Sim.
Trained NN

NN

NN

NN

Sim.

Sim.
⋮

Distributed inference

Sim.

Trained NN

⋮

NN

NN

NN

Observed data

Trace

Trace

Trace
⋮

Traces reproducing
observed data

Inferred
parameters

HPC

HPC HPC

TRAINING

INFERENCE

Baydin et al. “Efficient Probabilistic Inference in the Quest for Physics Beyond the Standard Model” NeurIPS 2019





● Developed techniques that led to the
largest scale inference in Turing-complete 
probabilistic programing, approx. 25,000 latents in 
Sherpa, 1M lines of C++ code, 32,768 CPU cores

● Largest-scale PyTorch MPI (128k minibatch size)
● First tractable Bayesian inference 

for LHC physics 
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“etalumis” 
  simulate

Cori supercomputer, Lawrence Berkeley Lab
2,388 Haswell nodes (32 cores per node)
9,688 KNL nodes (68 cores per node)

Baydin et al. “Etalumis: Bringing Probabilistic Programming to Scientific Simulators at Scale” SC19

Funding: DOE/Lawrence Berkeley Lab

Best Paper Finalist at SC19, top international supercomputing venue
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px

py

pz

Decay 
channel

Rejection 
sampling

Rejection 
sampling

Calorimeter

Interpretability
Develop techniques to inspect probabilistic structure of simulators

Latent probabilistic structure (250 most frequent traces) of the Standard Model in Sherpa



Differentiable programming
and simulators



What is differentiable programming?
Deep learning (neural networks) has been at the core of recent advances in 
machine learning and artificial intelligence

Baydin, Pearlmutter, Radul, Siskind, 2018. Automatic differentiation in machine learning: a survey. 
Journal of Machine Learning Research (JMLR) http://jmlr.org/papers/v18/17-468.html

Tesla Autopilot (2020)
OpenAI ChatGPT (2022)Stable Diffusion 2 (2022)

http://jmlr.org/papers/v18/17-468.html


What is differentiable programming?
A generalization of deep learning to arbitrary programs
● Neural networks = nonlinear differentiable functions (programs)

whose parameters we tune by gradient-based optimization
● We get derivatives by running the code via automatic differentiation 

(mainly backpropagation / reverse mode)

automatic 
differentiation

Ruder (2017)

Baydin, Pearlmutter, Radul, Siskind, 2018. Automatic differentiation in machine learning: a survey. 
Journal of Machine Learning Research (JMLR) http://jmlr.org/papers/v18/17-468.html

http://jmlr.org/papers/v18/17-468.html
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Simulators and differentiability

● Simulator code is not differentiable
🡲 Use surrogates (differentiable approximation learned from data)

● Simulator code is differentiable 
(but has not been used in a differentiable way so far)
🡲 Use automatic differentiation if feasible
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Non-differentiable simulator

Inputs Outputs

Non-differentiable code

Parameters

Inputs OutputsParameters

Run many times, generate large data set
Learn a generative model (approximation)

Differentiable surrogate with 
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Example: Exoplanet radiative transfer

Himes,  Harrington, Cobb, Baydin, Soboczenski, O’Beirne, Zorzan, Wright, Scheffer, Domagal-Goldman, Arney. 2022. “Accurate Machine-Learning Atmospheric Retrieval via a 
Neural-Network Surrogate Model for Radiative Transfer” The Planetary Science Journal 3 (4). American Astronomical Society: 236–250. doi:10.3847/PSJ/abe3fd.

● Posterior distributions of gas concentrations in exoplanet 
atmospheres, conditioned on observed spectra, using radiative 
transfer simulators

● Surrogates allow up to 180× faster inference



Example: Solar energetic particles

Poduval, Baydin, Schwadron. 2021. “Studying Solar Energetic Particles and Their Seed Population Using Surrogate Models” In Machine 
Learning for Space Sciences Workshop, 43rd Committee on Space Research (COSPAR) Scientific Assembly, Sydney, Australia.

Baydin, Poduval, Schwadron. 2023. “A Surrogate Model For Studying Solar Energetic Particle Transport and the Seed Population.” 
Space Weather 21 (12). American Geophysical Union

● Solar energetic particles (SEPs) pose threats to
○ Humans in deep space exploration 
○ Scientific instruments onboard spacecraft

● Developed an EPREM simulator surrogate 
(109× faster) enabling posterior inference 
conditioned on real space weather events

Parker Solar Probe (NASA)



Robotic rotorcraft (VTOL) with Dragonfly Mass 
Spectrometer (DraMS) and other instruments

Machine learning methods for detection of 
“life” using molecular complexity as a biosignature

https://www.nasa.gov/dragonfly 

Example: Astrobiology
Dragonfly: NASA mission to Saturn/Titan (launch planned June 2027)

https://www.nasa.gov/dragonfly


Gebhard, Bell, Gong, Hastings, Fricke, Cabrol, Sandford, Phillips, Warren-Rhodes, Baydin. 2022. “Inferring Molecular Complexity from Mass 
Spectrometry Data Using Machine Learning.” In Machine Learning and the Physical Sciences Workshop, NeurIPS 2022.

Created a dataset of 400,000+ molecules 
(17,000+ with mass spectra)

Machine learning methods for complexity 
prediction:

“Molecule → complexity” prediction
extreme speed-up ~ 1.04B times faster 
than the classic algorithm (Go)

“Mass spectrum → complexity” prediction
cheap enough to be deployed onboard

Example: Astrobiology
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Differentiable simulator

Inputs Outputs

Non-differentiable code

Parameters

Inputs Outputs

Same simulator, but now differentiable!

Parameters

Automatic differentiation 
(e.g., source code transformation)
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Example: Differentiable Orbit Propagation
● SGP4 propagator computes orbital states of satellites 

and space debris around the Earth
● Predicting the effect of perturbations caused by the 

Earth’s shape, drag, radiation, gravitation effects of the 
Sun and the Moon

● Uses two-line elements produced by NORAD and NASA

● dSGP4 based on PyTorch
● Collaboration with CelesTrak, based on data from Space 

Track (US Space Force)

G Acciarini, AG Baydin, D Izzo. Closing the Gap Between SPG4 and High-Precision Propagation via Differentiable Programming. 
https://arxiv.org/abs/2402.04830 

https://arxiv.org/abs/2402.04830
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Differentiable programming in particle physics

AG Baydin, K Cranmer, P de Castro Manzano, C Delaere, D Derkach, J Donini, T Dorigo, A Giammanco, J Kieseler, L Layer, G Louppe, F Ratnikov, 
G Strong, M Tosi, A Ustyuzhanin, P Vischia, H Yarar. 2021. “Toward Machine Learning Optimization of Experimental Design.” Nuclear 
Physics News 31 (1). Taylor & Francis: 25–28. doi:10.1080/10619127.2021.1881364

AG Baydin, K Cranmer, M Feickert, L Gray, L Heinrich, A Held, A Melo, M Neubauer, J Pearkes, N Simpson, N Smith, G Stark, S Thais, V Vassilev, 
G Watts. 2020. “Differentiable Programming in High-Energy Physics.” In Snowmass 2021 Letters of Interest (LOI), Division of Particles and 
Fields (DPF), American Physical Society. https://snowmass21.org/loi

● Differentiable analysis pipelines
Unify analysis pipelines, simultaneously optimize 
free parameters of analysis w.r.t. desired physics 
objective

● Gradient-based inference 
(probabilistic programming)
Enable efficient simulation-based inference, reduce 
number of events needed by orders of magnitude

https://mode-collaboration.github.io/ 

https://mode-collaboration.github.io/


Community
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Machine-learning Optimized Design of Experiments (MODE)

Probabilistic and differentiable programming in design optimization of 
next-generation (large-scale) instruments for particle physics and industry
(CERN, Padova, UC Louvain, Oxford, NYU, Rutgers, Uppsala, TU Munich, Durham)

https://mode-collaboration.github.io/ 

Workshop series on Differentiable Programming for Experiment Design
● 8–13 Jun 2025: Crete, Greece
● 23–25 Sep 2024: Valencia, Spain
● 24–26 Jul 2023: Princeton University, US
● 12–16 Sep 2022: Orthodox Academy of Crete, Greece
● 6–8 Sep 2021: Université catholique de Louvain, Belgium

https://indico.cern.ch/event/1481852/

AG Baydin, K Cranmer, P de Castro Manzano, C Delaere, D Derkach, J Donini, T Dorigo, A Giammanco, J Kieseler, L Layer, G Louppe, F Ratnikov, G Strong, M Tosi, A Ustyuzhanin, P Vischia, H Yarar. 2021. 
“Toward Machine Learning Optimization of Experimental Design.” Nuclear Physics News 31 (1). Taylor & Francis: 25–28. doi:10.1080/10619127.2021.1881364

AG Baydin, K Cranmer, M Feickert, L Gray, L Heinrich, A Held, A Melo, M Neubauer, J Pearkes, N Simpson, N Smith, G Stark, S Thais, V Vassilev, G Watts. 2020. “Differentiable Programming in High-Energy 
Physics.” In Snowmass 2021 Letters of Interest (LOI), Division of Particles and Fields (DPF), American Physical Society. https://snowmass21.org/loi

T Dorigo, A Giammanco, P Vischia, M Aehle, M Bawaj, A Boldyrev, P de Castro Manzano, D Derkach, J Donini, A Edelen, F Fanzago, NR Gauger, C Glaser, AG Baydin, L Heinrich, R Keidel, J Kieseler, C Krause, M 
Lagrange, M Lamparth, L Layer, G Maier, F Nardi, HES Pettersen, A Ramos, F Ratnikov, D Röhrich, R Ruiz de Austri, P Martínez Ruiz del Árbol, O Savchenko, N Simpson, GC Strong, A Taliercio, M Tosi, A 
Ustyuzhanin, H Zaraket. 2022. “Toward the End-to-End Optimization of Particle Physics Instruments with Differentiable Programming: a White Paper.” https://arxiv.org/abs/2203.13818 

https://mode-collaboration.github.io/
https://snowmass21.org/loi
https://arxiv.org/abs/2203.13818
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MIAPbP program

Munich Institute for Astro-, Particle and BioPhysics, 
Technical University of Munich

Max Planck Institute for Extraterrestrial Physics

Month-long program in Differentiable and Probabilistic 
Programming for Fundamental Physics

● Organizers: Lukas Heinrich, Torsten Enßlin, Michael 
Kagan, Atılım Güneş Baydin, Vassil Vassilev

● Bringing together probabilistic programming and 
fundamental physics communities

● Hosted in Munich during 5–30 Jun 2023

https://www.munich-iapbp.de/probabilistic-programming  

https://www.munich-iapbp.de/probabilistic-programming
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MIAP program

Munich Institute for Astro-, Particle and BioPhysics, 
Technical University of Munich

Month-long program in Differentiable and Probabilistic 
Programming for Fundamental Physics

● Organizers: Lukas Heinrich, Torsten Enßlin, Michael 
Kagan, Atılım Güneş Baydin, Vassil Vassilev

● Bringing together probabilistic programming and 
fundamental physics communities

● Hosted in Munich during 5 - 30 Jun 2023

https://www.munich-iapbp.de/probabilistic-programming  

https://www.munich-iapbp.de/probabilistic-programming


Frontier Development Lab
● A research accelerator for state-of-the-art ML and space sciences
● Two main versions

○ NASA Ames & SETI Institute (FDL US)
○ ESA & University of Oxford (FDL Europe)

● Access to compute provided by industry (Google, Intel, Nvidia and others)
● Teams of 

○ PhD students / postdocs (two machine learning, two domain science)
○ supervising faculty

https://fdl.ai 

https://fdl.ai
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Machine Learning and the Physical Sciences workshop
Conference on Neural Information Processing Systems (NeurIPS)
2017, 2019, 2020, 2021, 2022, 2023, 2024

● One of the largest NeurIPS workshops
● > 200 papers and 250 reviewers in 2024
● Cutting-edge research on ML and physical sciences

https://ml4physicalsciences.github.io/ 

Please consider submitting your work!

Funding: DeepMind, Nvidia, Intel, Cray, Moore Foundation, Vector Institute

ML and the Physical Sciences
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Thank you for listening

Questions?



Extra slides ahead!


