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• …

Model optimization: 
• Pruning  
• Knowledge distillation 
• Dropout  
…

Goals:  
• Speed-up convergence  
• Guide the training towards better regions of 

parameters space 
   From smoother landscape to the target  

In this talk:

Learning protocols

Dynamic data / task selection: 
• Active learning 
• Curriculum learning 
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Supervised learning - general setup

wμ+1 = wμ − η∇wℒμ

𝒟 = {xi, yi}P
i=1

Dataset with labels

ℒ =
1
2 ( ̂y − y)2

Error (aka loss)

Neural Network
̂y = fw(x)

(Online) Stochastic gradient descent

̂y = erf(w⊺x)Simplest example:
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wμ+1 = wμ − η∇wℒμ

Can we compute the optimal   strategy ?
In terms of the final performance 

*
*
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[ Saad & Solla (1995); Biehl & Schwarze 
(1995); Riegler & Biehl (1995); Goldt et al 
(2019); Refinetti (2020); Veiga et al (2022); 
Arnaboldi et al (2023); … Agoritsas et al 
(2018); Mignacco et al (2020); Mannelli et 
al (2021); Bonnaire et al (2023); … ]
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High-dimensional 
complex dynamics

Low-dimensional 
effective description

Control theory is 
computationally 

demanding
Control theory can be 

applied

Statistical physics

·Q = f(Q, u) control

variables Statistical physics

[ Pontryagin (1962), Bellman (1965); Saad & 
Rattray(1997), Sivak & Crooks (2012); … ]

wμ+1 = wμ − η∇wℒμ
N → ∞
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Continual learning & catastrophic forgetting

ML (empirical):
Neural networks suffer from 
catastrophic forgetting  
[Goodfellow et al (2014); Ruder & Planck (2014); 
Nguyen et al (2019); Parisi et al (2019); Mirzadeh 
et al (2020); Neyshabur et al (2020)]

ML (theory):
Key role of width, depth  
and task similarity   
[Mirzadeh et al (2021); Lee et al. (2021, 
2022); f Asanuma et al (2021); Doan et 
al (2021); Shan et al (2024)]
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Task 1

Introduced in: Lee, Goldt, & Saxe (ICML 2021)

Task 2

𝒟1 = {x(1)
i , y(1)

i }

𝒟2 = {x(2)
i , y(2)

i }

x ∼ 𝒩(0,1) ∈ RN N ≫ 1
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Task 1
Teacher 1

A teacher-student model of continual learning

w*1

w2

w1

Task 2
Teacher 2

w*2

……

Introduced in: Lee, Goldt, & Saxe (ICML 2021)

y(2) = g* ( ⋅
x

N )w*2

Student
(multi-head)

v(t)

y(1) = g* ( ⋅
x

N )w*1

̂y(t) =
K=2

∑
k=1

v(t)
k g (wk ⋅

x

N )

7/10



10th Feb 2025 Optimal learning strategies via statistical physics and control theory

A teacher-student model of continual learning

ODEs for the order parameters:

wμ+1 = wμ − η∇wℒμ
N → ∞

α = μ/N

Mkt =
wk ⋅ wt

*

N
Example: “Magnetisation”
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Experiments on Fashion MNIST
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Conclusions & Perspectives 

• Experiments beyond toy models: incorporate models of structured data;

Many open directions!

In summary:

• Optimal control of effective learning dynamics reveals nontrivial training protocols. 

• Continual learning: non-homogeneous replay avoids forgetting. 

• Other learning paradigms : shaping, transfer learning, active learning, …
• Batch learning;

10/10
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A teacher-student model of dropout

w2

w1

v

Student

̂y =
K=2

∑
k=1

vk g (wk ⋅
x

N )

N. Srivastava, G. Hinton, et al., J. ML Res. (2014)

Teacher

w*1
y = g* ( ⋅

x

N )w*1
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A teacher-student model of dropout

w2

w1

v

Student

̂y = v2 g (w2 ⋅
x

N )

With probability 
1 − r

N. Srivastava, G. Hinton, et al., J. ML Res. (2014)

Teacher

w*1
y = g* ( ⋅

x

N )w*1
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Curriculum learning

Image from: Wang, Xin, Yudong Chen, and Wenwu Zhu. IEEE transactions on pattern analysis and machine intelligence 44.9 (2021):4555-4576.
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Curriculum learning

• Conditional reflexes (dogs) [Pavlov (1927)] 
• Shaping (rats, pigeons) [Skinner (1938)] 
• Discrimination along a continuum (rats) 

[Lawrence (1952)] 
• Cross-species auditory identification (rats, 

humans) [Liu et al. (2008)]

Animals:
• Discrimination along a continuum [Baker, Stanley (1954)] 
• Past tense [Plunkett et al (1990; 1991)] 
• Fading with auditory and visual stimuli [Pashler, Mozer (2013)] 
• Eureka effect [Ahissar, Hochstein (1997)]

Humans:
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[Lawrence (1952)] 
• Cross-species auditory identification (rats, 

humans) [Liu et al. (2008)]

Animals:
• Discrimination along a continuum [Baker, Stanley (1954)] 
• Past tense [Plunkett et al (1990; 1991)] 
• Fading with auditory and visual stimuli [Pashler, Mozer (2013)] 
• Eureka effect [Ahissar, Hochstein (1997)]

Humans:

• Easy-to-hard training [Bengio et al (2009] 
• Anti-curriculum [Zhang et al (2019);  

Hacohen & Weinshall (2019)] 
• No effect of CL in vision benchmarks 

 [Wu et al (2020)] 
• Convincing results for LLMs and RL  

[Brown et al (2020); Narvekar et al (2020)]

ML (empirical): ML (theory):
• Single-update advantage of easy samples  

[Weinshall et al (2020)] 
• Speed benefit but limited performance upgrade in convex 

problems [Saglietti et al (2021); Lee et al. (2024)] 
• Computational benefit in parity machines [Abbe et al. (2023);  

 Cornacchia et al (2023)] 
• Asymptotic benefit in non-convex models [Mannelli et al (2024)]
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A teacher-student model of curriculum learning
Introduced in: Bengio, et al. (ICML 2009), Saglietti, et al. (NeurIPS 2022)
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A teacher-student model of curriculum learning

Teacher

…… y = sign(w* ⋅ xr)

Student
……

y = erf ( w ⋅ x

2 )

Input:  x = (xr , xi) ∈ ℝN

R
el

ev
an

t
Irr

el
ev

an
t

…

xr ∈ ℝρN

xi ∈ ℝ(1−ρ)N

ℒ =
1
2

(y − ̂y)2 + λ∥w∥2
2

Ridge-regularized MSE loss:

Unit variance

Variance  Δ

Introduced in: Bengio, et al. (ICML 2009), Saglietti, et al. (NeurIPS 2022)
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A teacher-student model of curriculum learning
[Saglietti, et al (NeurIPS 2022)]
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Online learning: [Biehl & Schwarze (1995); Saad & Solla (1995); …]
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A teacher-student model of curriculum learning
[Saglietti, et al (NeurIPS 2022)]

Curriculum: Anti-curriculum:
Easy Hard EasyHard

Online learning: [Biehl & Schwarze (1995); Saad & Solla (1995); …]
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• Easy-to-hard curriculum is often suboptimal. 

Optimal curriculum protocol 

[ F. Mori, FM, in preparation ]

Control: u = Δρ = 0.55, η = 2.58
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• Easy-to-hard curriculum is often suboptimal. 

Anti-curriculum 
is optimal:

Optimal curriculum protocol 

Hard Easy

Control: u = Δ

[ F. Mori, FM, in preparation ]

ρ = 0.55, η = 2.58

20
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Optimal curriculum protocol 

• Easy-to-hard curriculum becomes optimal if we also optimize over the learning rate schedule. 

[ F. Mori, FM, in preparation ]
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