Optimal learning strategies via statistical physics and control theory

10th Feb 2025

Francesco Mori

ML Nosh Lunch

"Optimal protocols for continual learning via statistical physics and control theory" FM, Stefano Sarao Mannelli, Francesca Mignacco

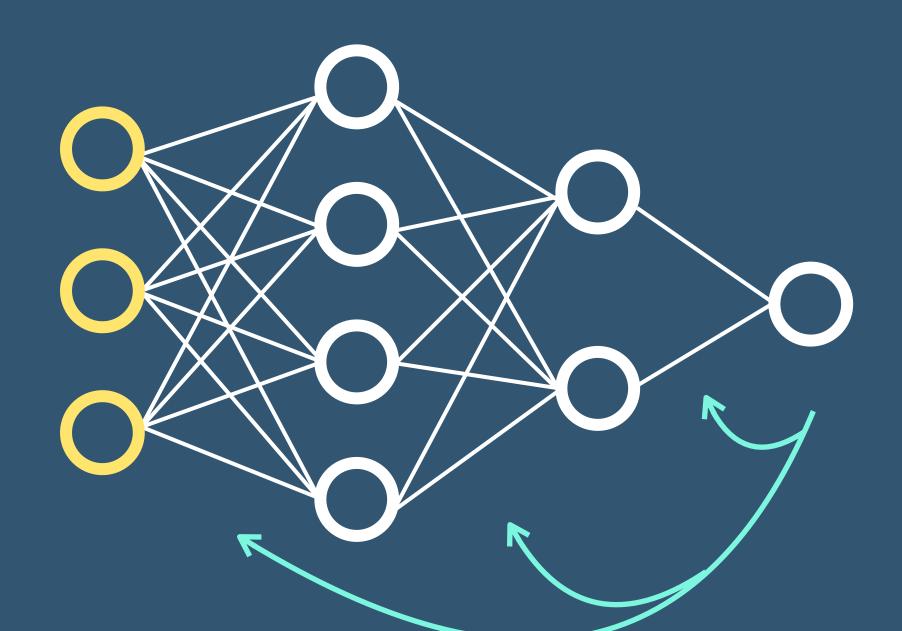
Accepted at ICLR 2025

Francesca Mignacco Princeton and CUNY



Stefano Sarao Mannelli Chalmers University

Structured Data / Task



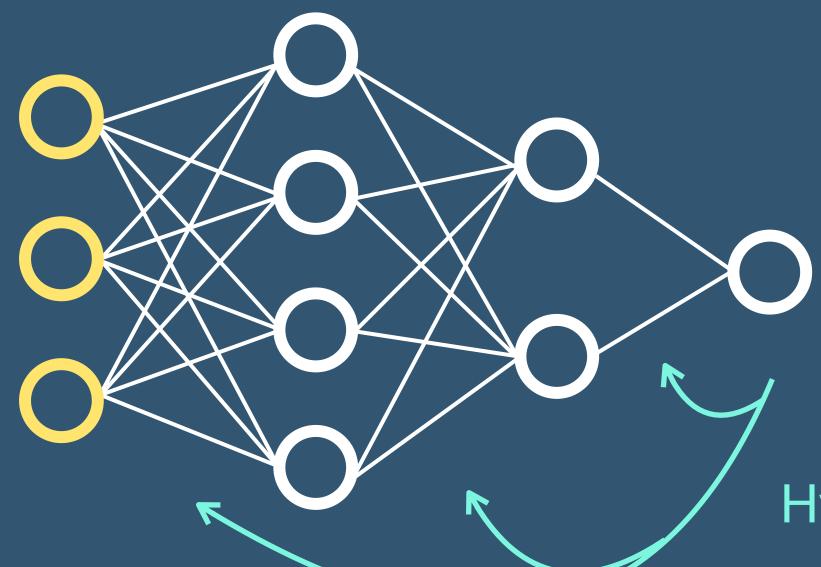
10th Feb 2025

Optimal learning strategies via statistical physics and control theory

Architecture

Optimization Algorithm

Structured Data / Task



10th Feb 2025

Architecture

Optimization Algorithm

Hyper-parameter schedules:

- Learning rate
- Momentum
- Batch size

• ...

Structured Data / Task

10th Feb 2025

Architecture

Model optimization:

- Pruning
- Knowledge distillation
- Dropout

. . .

Optimization Algorithm

Hyper-parameter schedules:

- Learning rate
- Momentum
- Batch size

• ...

Structured Data / Task

Dynamic data / task selection:

- Active learning
- Curriculum learning
- Transfer learning
- Multi-task learning

. . .

Architecture

Model optimization:

- Pruning
- Knowledge distillation
- Dropout

. . .

Optimization Algorithm

Hyper-parameter schedules:

- Learning rate
- Momentum
- Batch size

• ...

Goals:

- **Speed-up** convergence
- Guide the training towards better regions of parameters space

Structured Data / Task

Dynamic data / task selection:

- Active learning
- Curriculum learning
- Transfer learning
- Multi-task learning

Architecture

Model optimization:

- Pruning
- Knowledge distillation
- Dropout

Optimization Algorithm

Hyper-parameter schedules:

- Learning rate
- Momentum
- Batch size

• ...

Goals:

- **Speed-up** convergence
- Guide the training towards better regions of parameters space

From smoother landscape to the target

Structured Data / Task

In this talk:

. . .

Dynamic data / task selection:

- Active learning
- Curriculum learning
- Transfer learning
- Multi-task learning

10th Feb 2025

Architecture

Model optimization:

- Pruning
- Knowledge distillation
- Dropout

Optimization Algorithm

Hyper-parameter schedules:

- Learning rate
- Momentum
- Batch size

• ...

Supervised learning - general setup

Dataset with labels $\mathcal{D} = \{x_i, y_i\}_{i=1}^{P}$

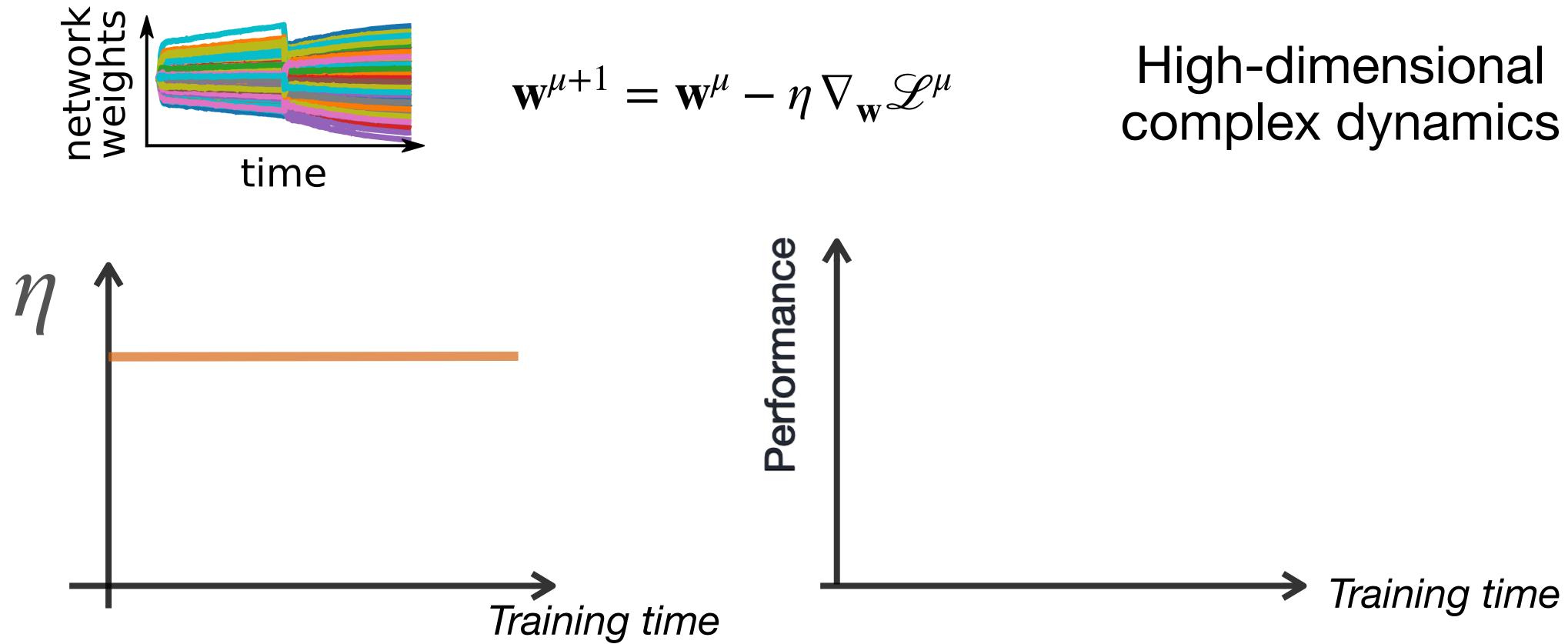
Error (aka loss)
$$\mathscr{L} = \frac{1}{2} \left(\hat{y} - y \right)^2$$

Neural Network $\hat{y} = f_{\mathbf{w}}(x)$

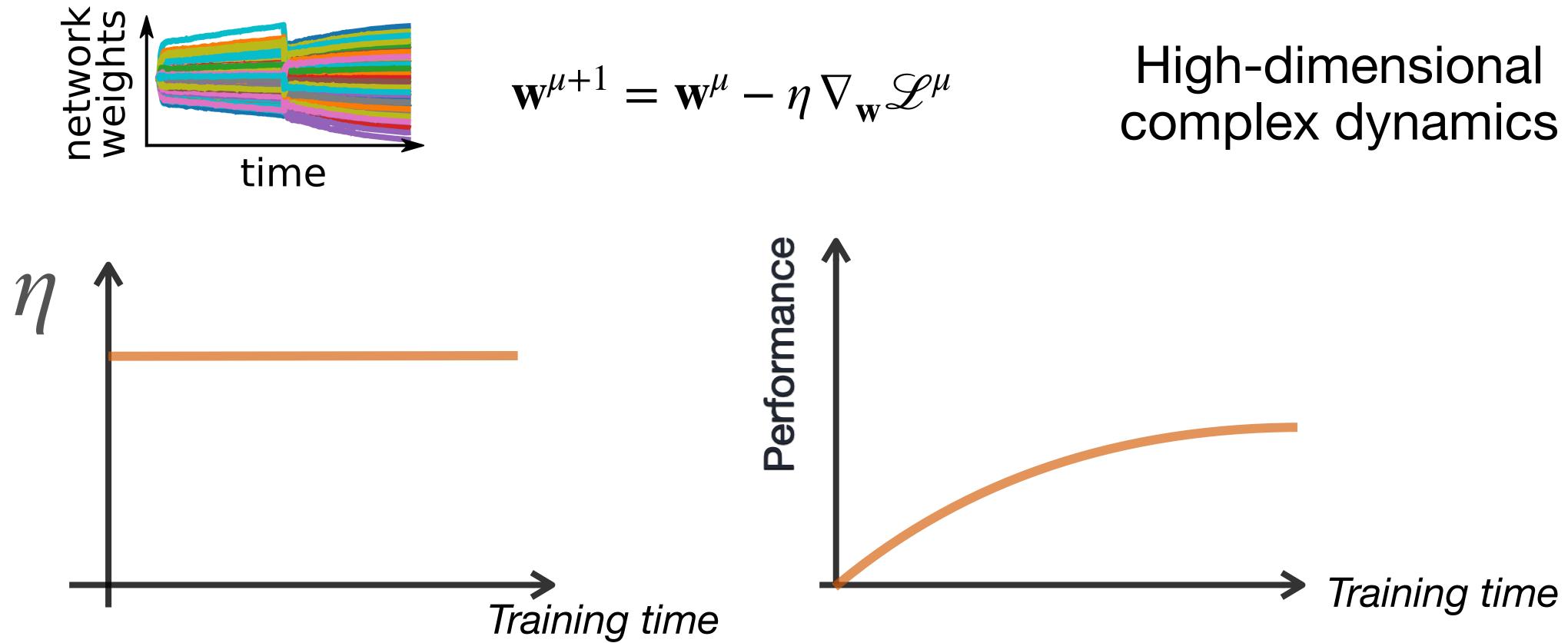
Simplest example: $\hat{y} = \operatorname{erf}(\mathbf{w}^{\mathsf{T}}x)$

(Online) Stochastic gradient descent

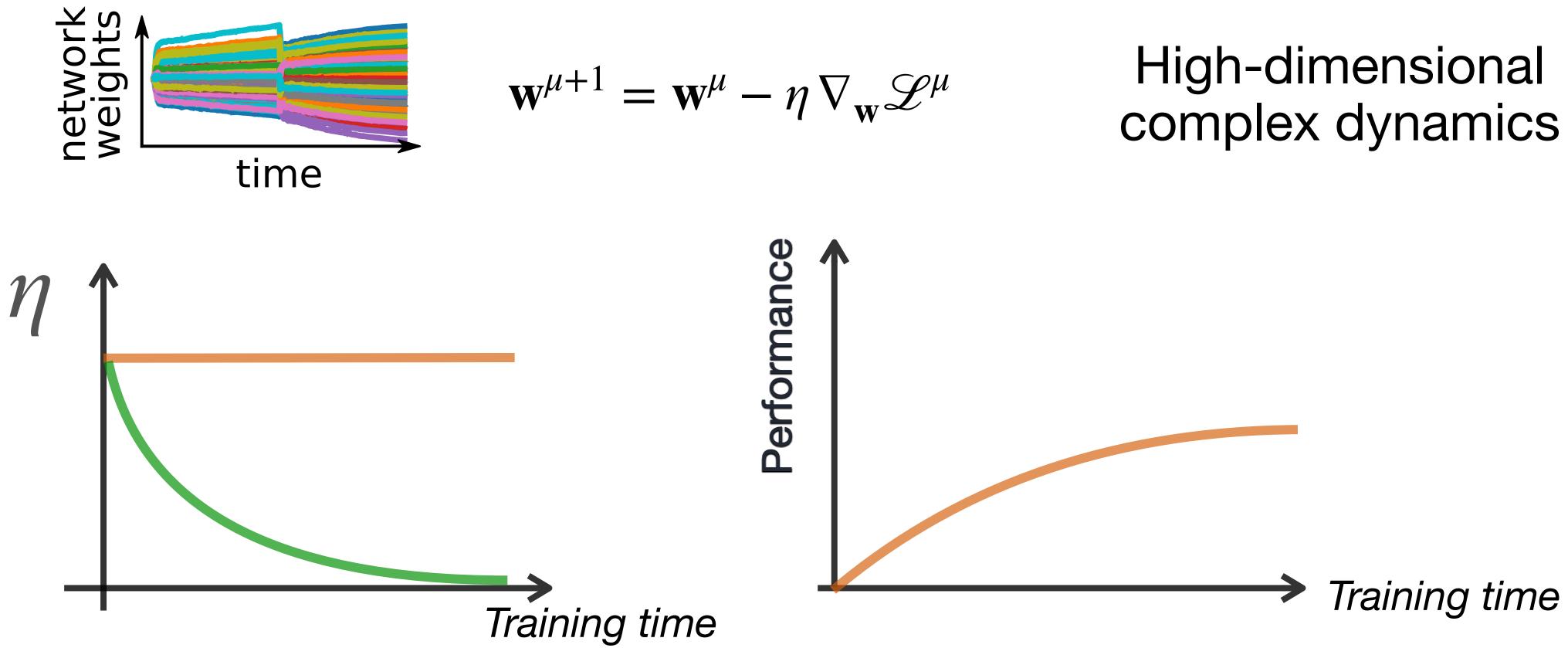
$$\mathbf{w}^{\mu+1} = \mathbf{w}^{\mu} - \eta \, \nabla_{\mathbf{w}} \mathscr{L}^{\mu}$$

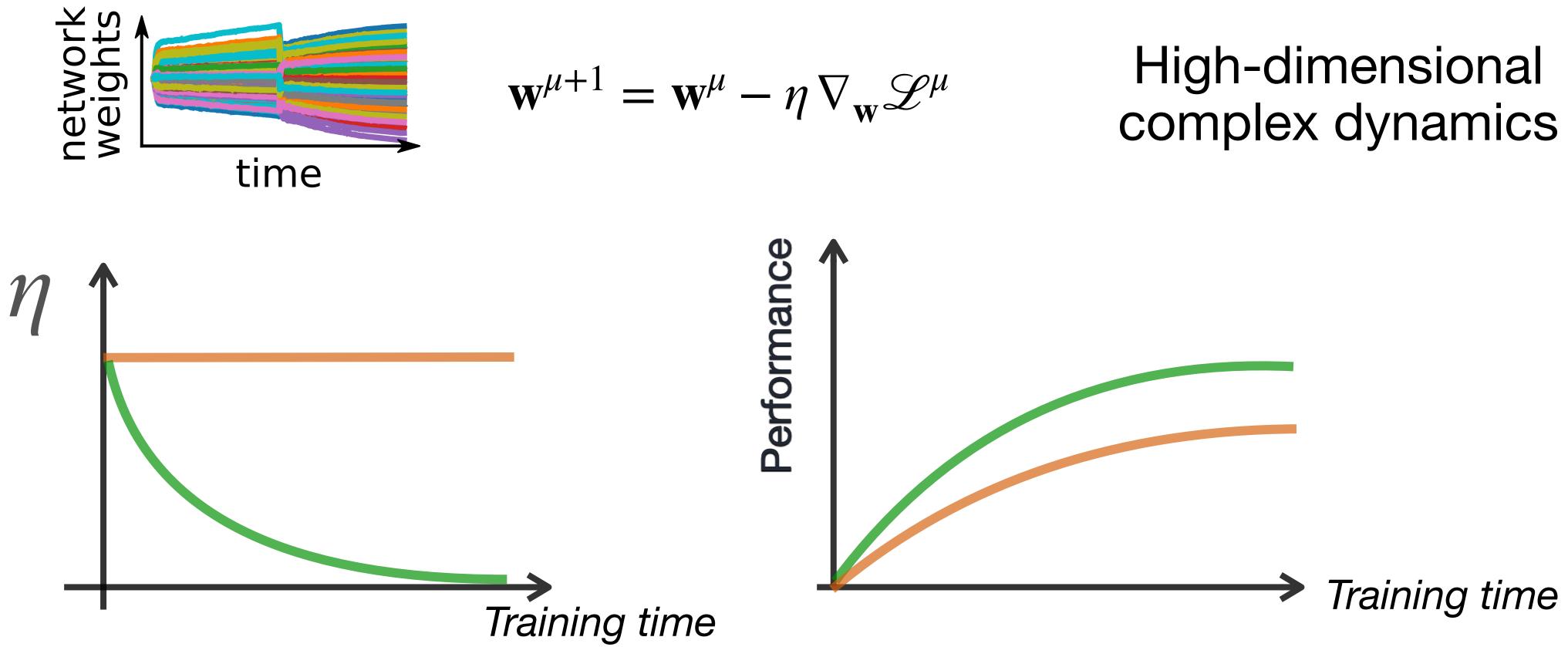


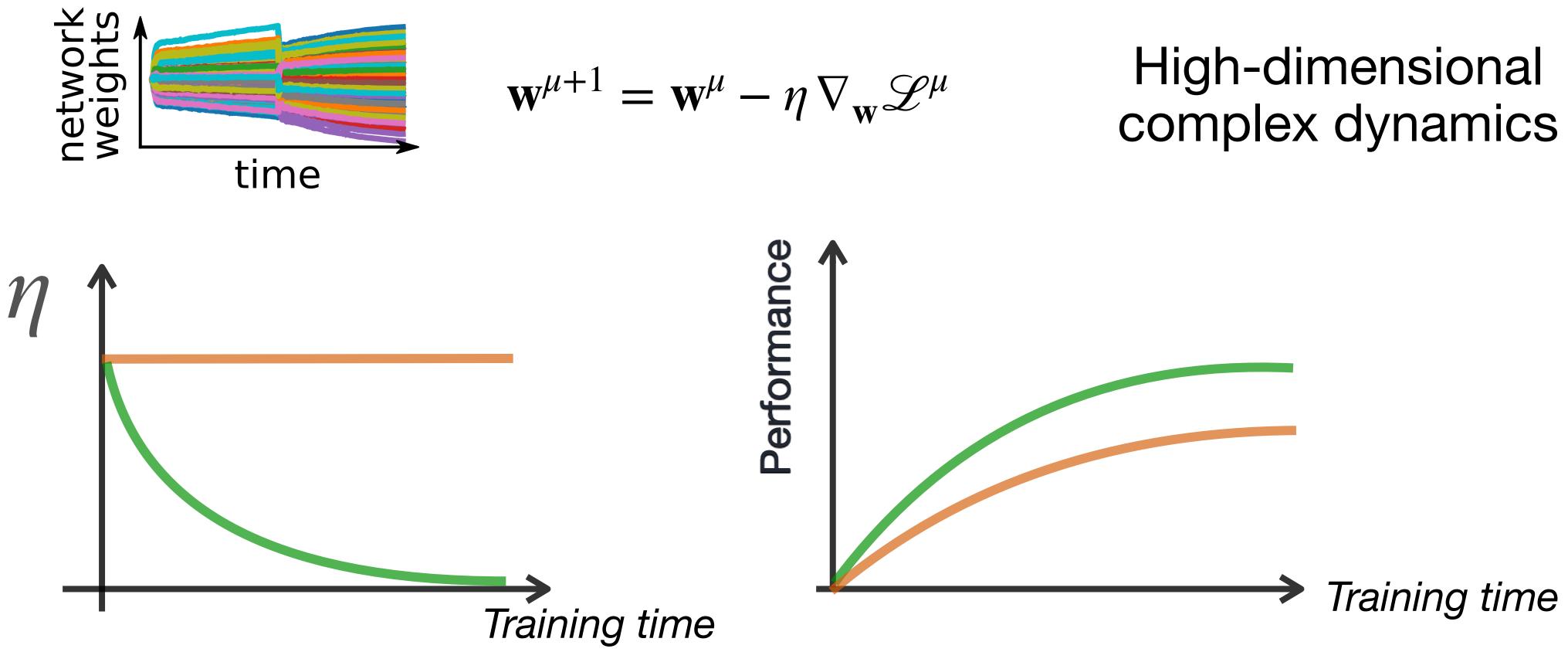
10th Feb 2025



10th Feb 2025







In terms of the final performance *

Can we compute the optimal* strategy ?

Training protocols

Structured Data / Task

Dynamic data / task selection:

- Active learning
- Curriculum learning
- Transfer learning
- Multi-task learning

. . .

Architecture

Model optimization:

- Pruning
- Knowledge distillation
- Dropout

. . .

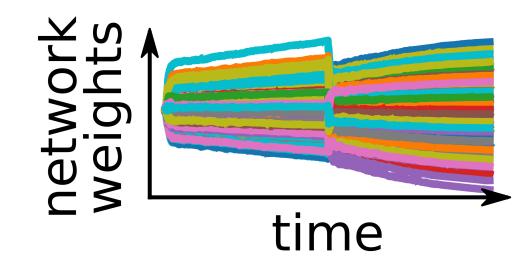
Optimization Algorithm

Hyper-parameter schedules:

- Learning rate
- Momentum
- Batch size

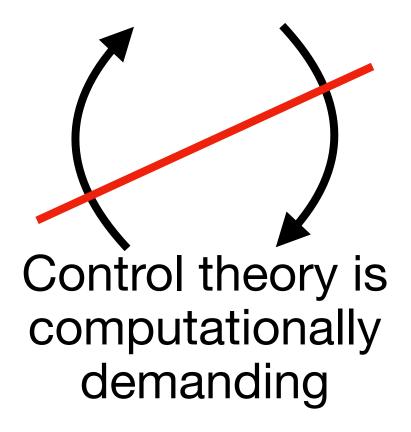
• ...

Dimensionality reduction + optimal control



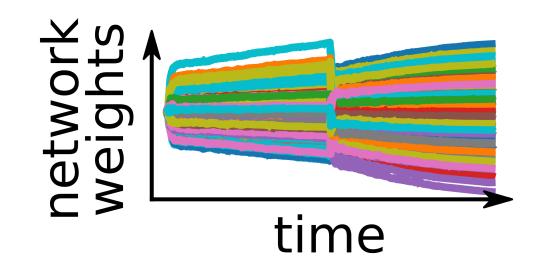
$$\mathbf{w}^{\mu+1} = \mathbf{w}^{\mu} - \eta \, \nabla_{\mathbf{w}} \mathscr{L}^{\mu}$$

High-dimensional complex dynamics



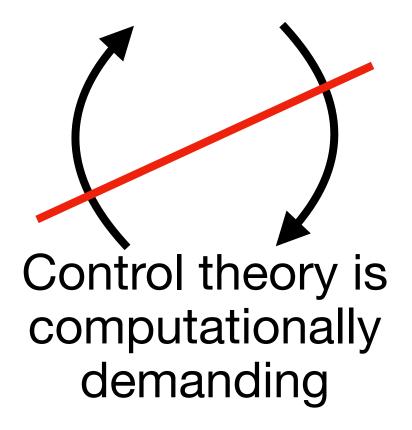
Dimensionality reduction + optimal control

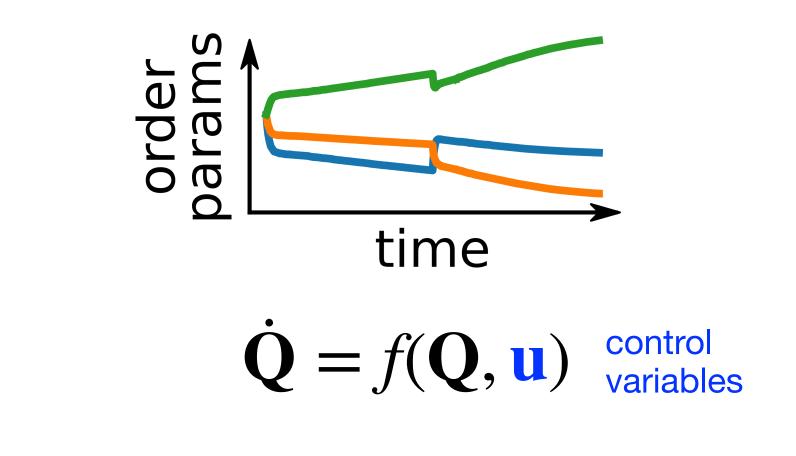
 $\rightarrow \infty$



 $\mathbf{w}^{\mu+1} = \mathbf{w}^{\mu} - \eta \, \nabla_{\mathbf{w}} \mathscr{L}^{\mu}$

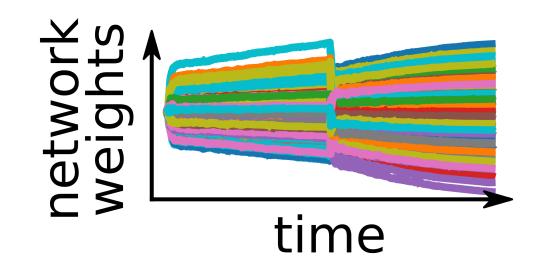
High-dimensional complex dynamics





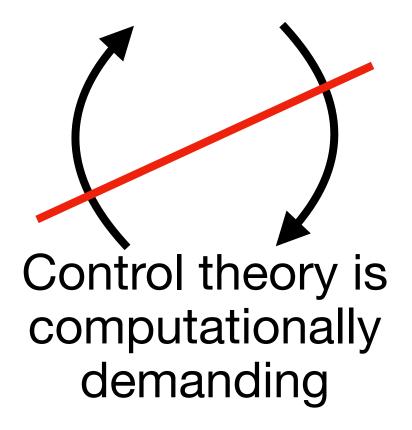
Low-dimensional effective description

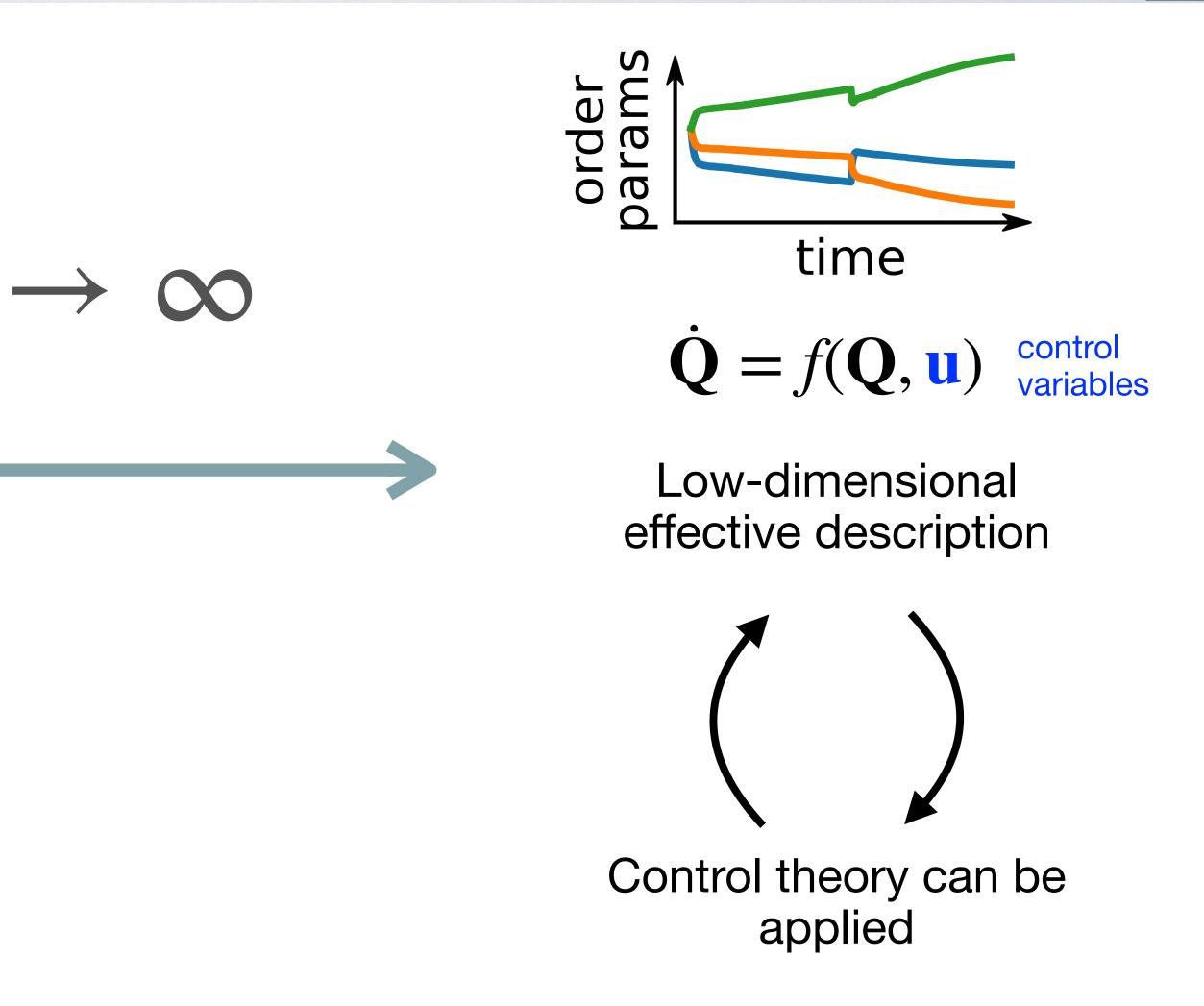
Dimensionality reduction + optimal control

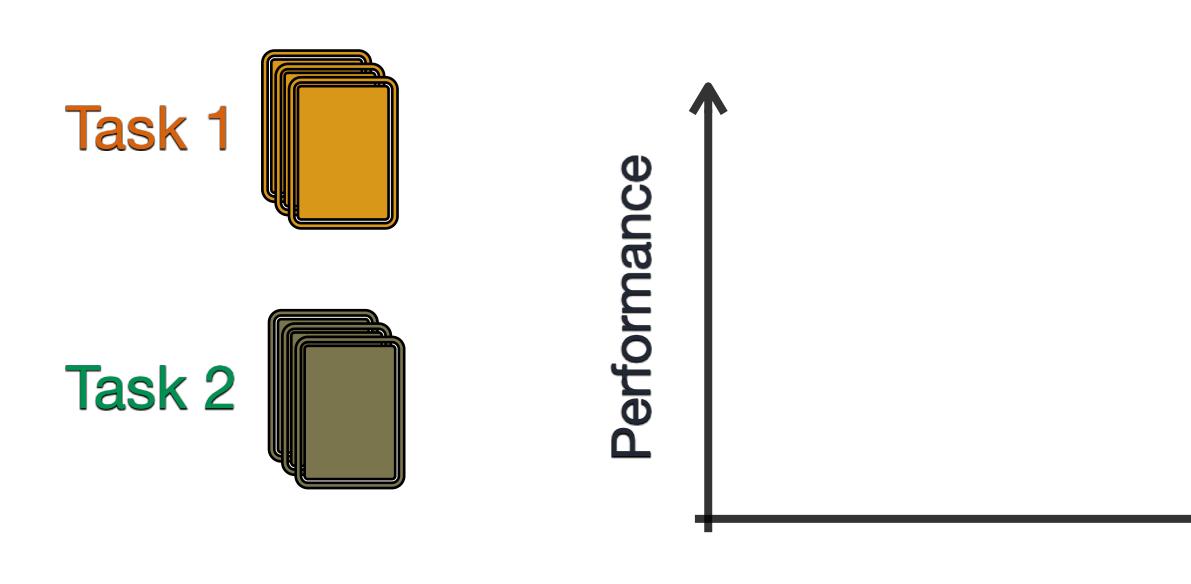


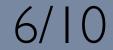
 $\mathbf{w}^{\mu+1} = \mathbf{w}^{\mu} - \eta \, \nabla_{\mathbf{w}} \mathscr{L}^{\mu}$

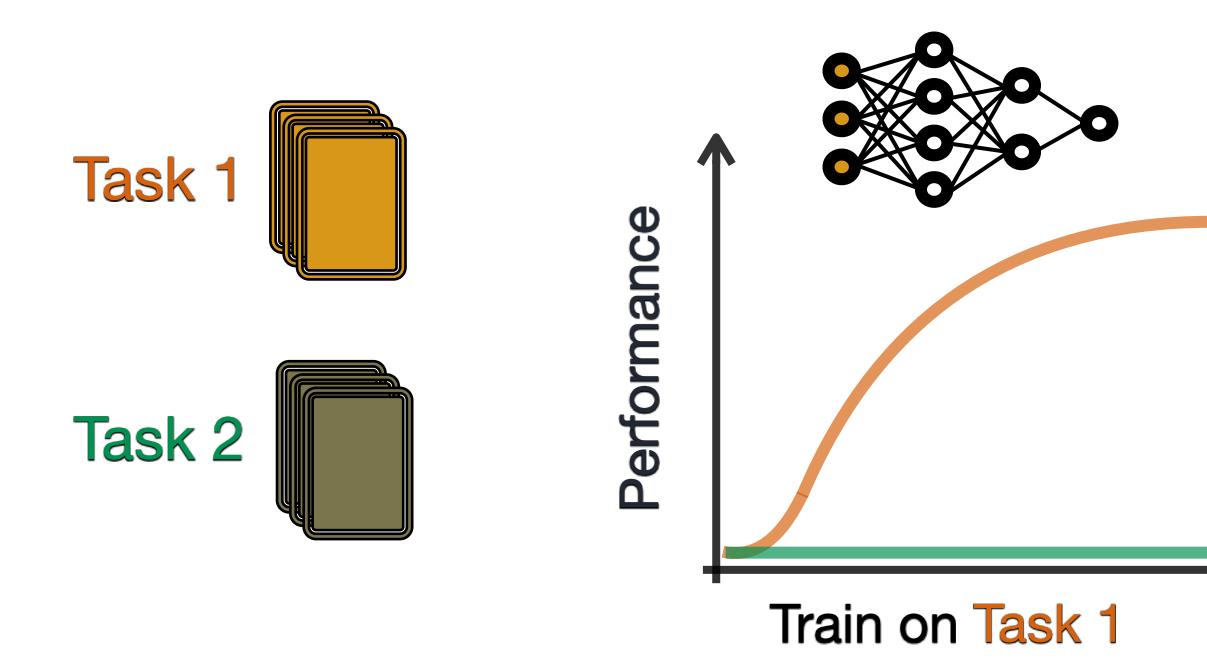
High-dimensional complex dynamics

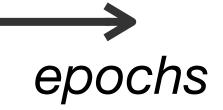


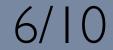


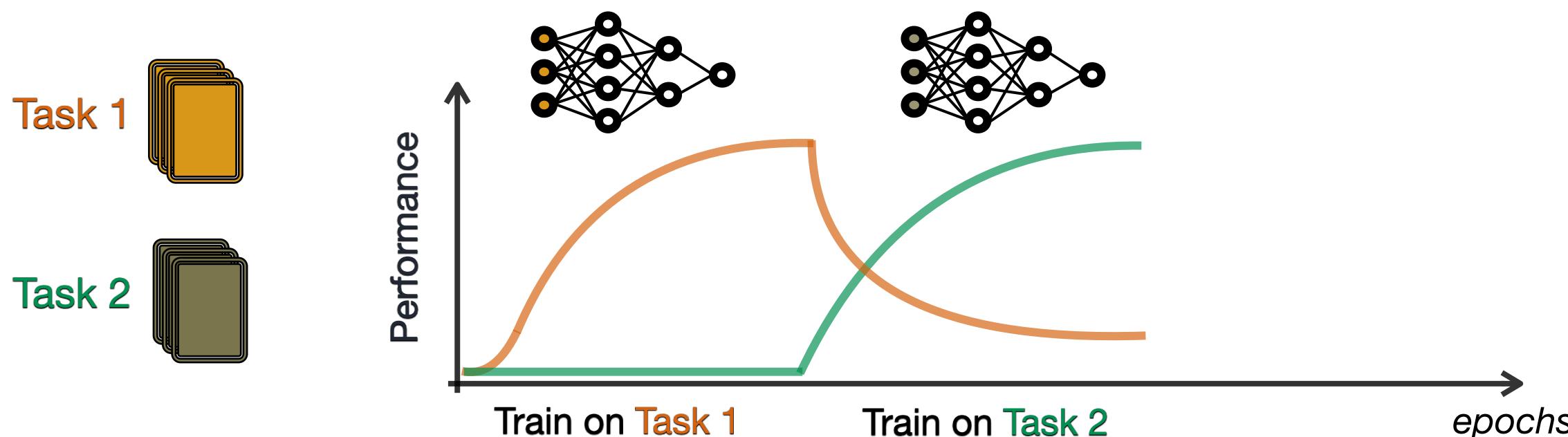






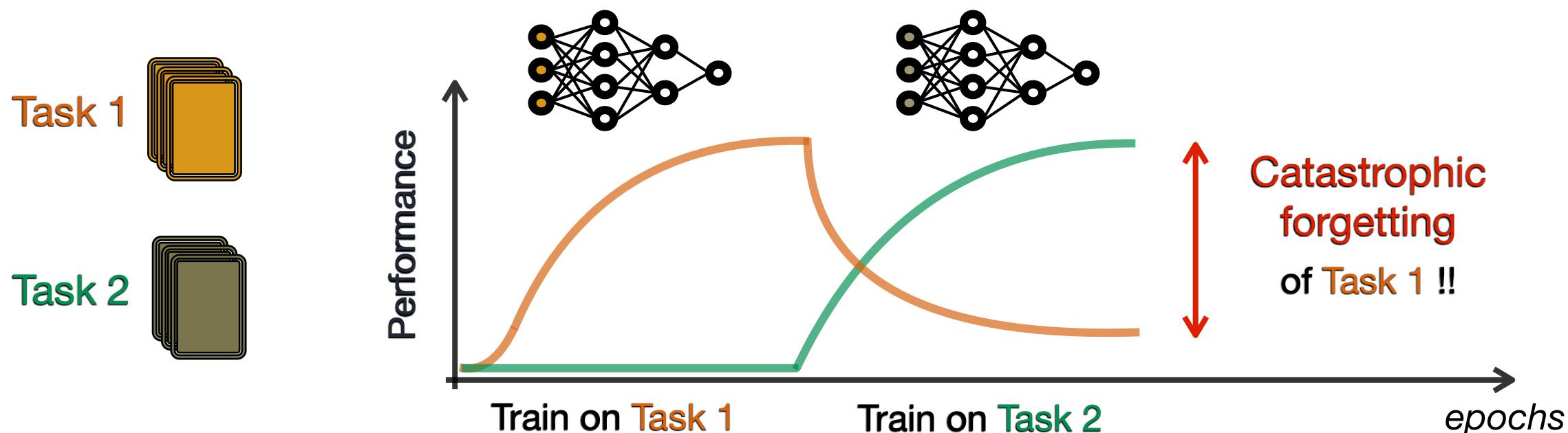






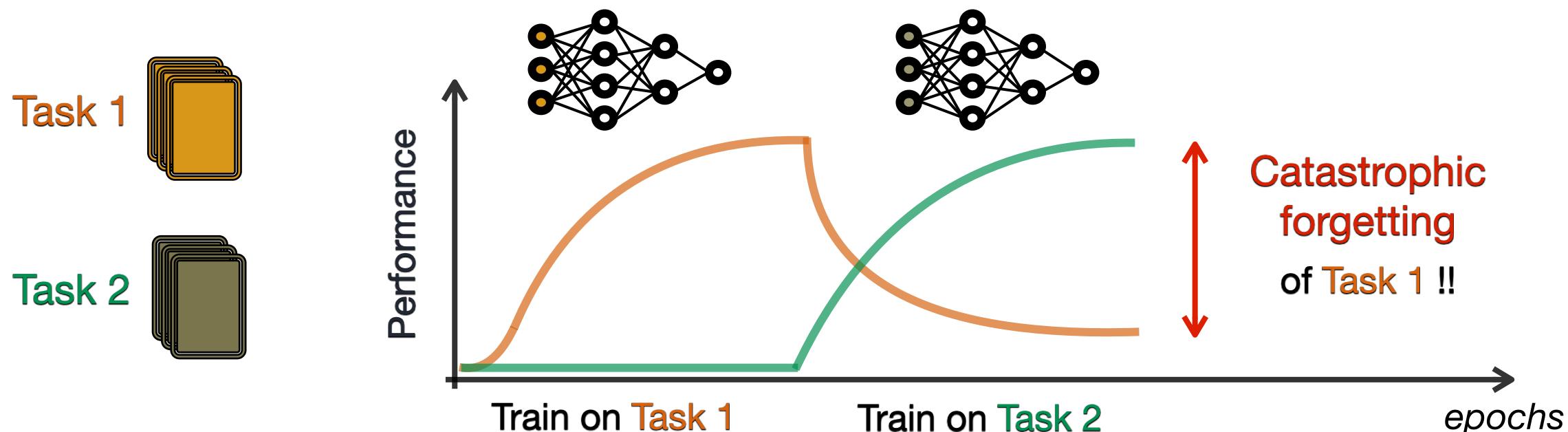
Train on Task 2

epochs



Train on Task 2

epochs



ML (empirical):

10th Feb 2025

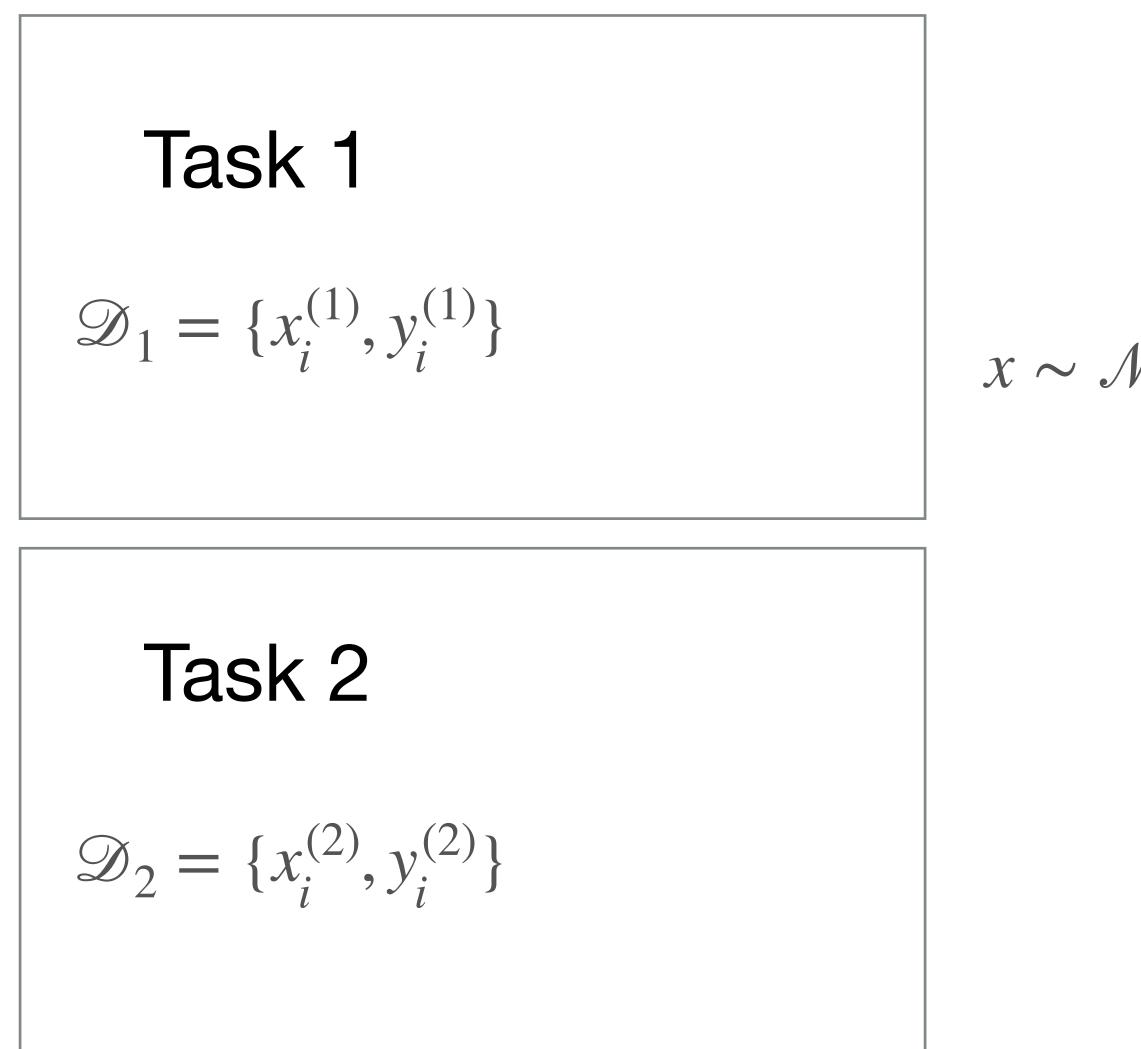
Optimal learning strategies via statistical physics and control theory

Train on Task 2

epochs

ML (theory):

A teacher-student model of continual learning



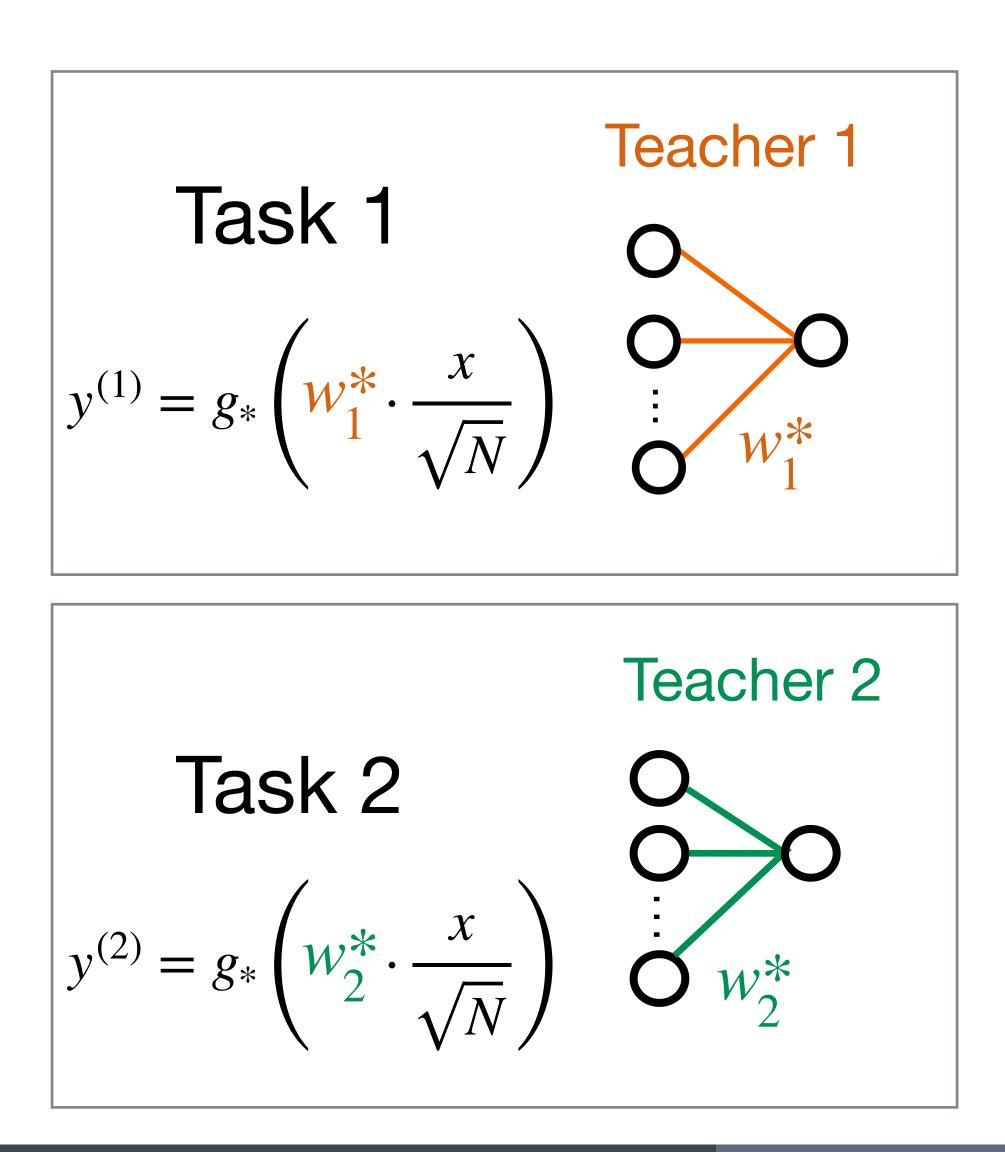
10th Feb 2025

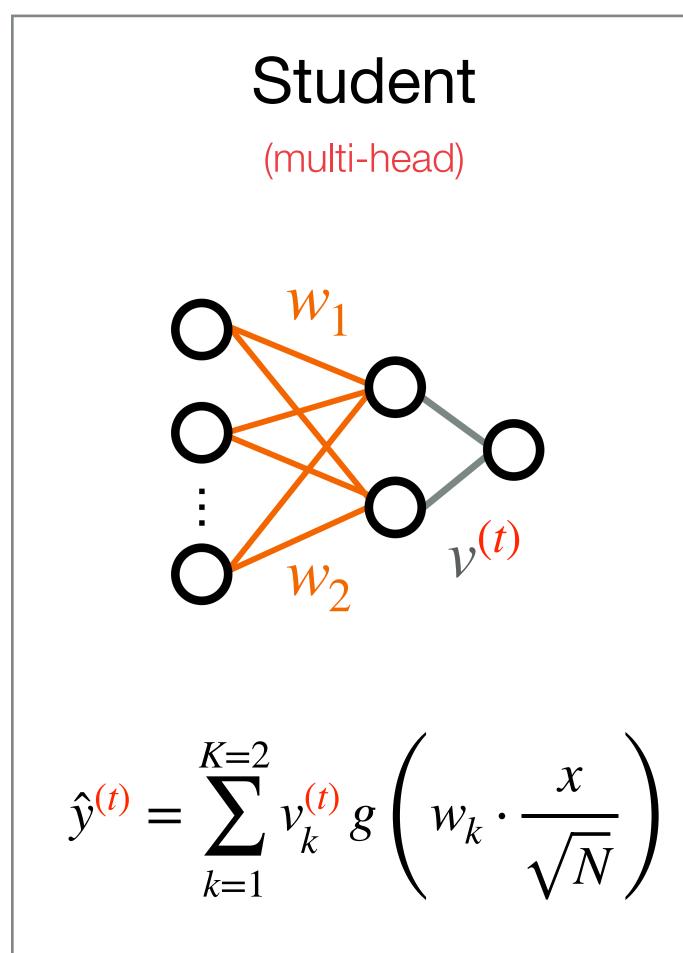
Introduced in: Lee, Goldt, & Saxe (ICML 2021)

$x \sim \mathcal{N}(0,1) \in \mathbf{R}^N \qquad N \gg 1$

A teacher-student model of continual learning

Introduced in: Lee, Goldt, & Saxe (ICML 2021)

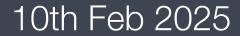




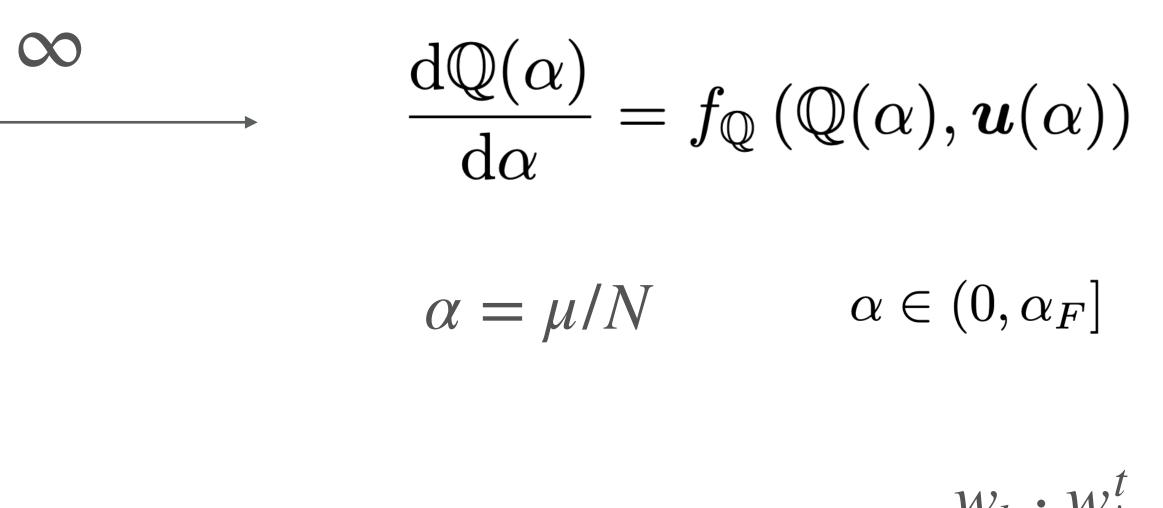
A teacher-student model of continual learning

 $N \to \infty$

 $\mathbf{w}^{\mu+1} = \mathbf{w}^{\mu} - \eta \, \nabla_{\mathbf{w}} \mathscr{L}^{\mu}$



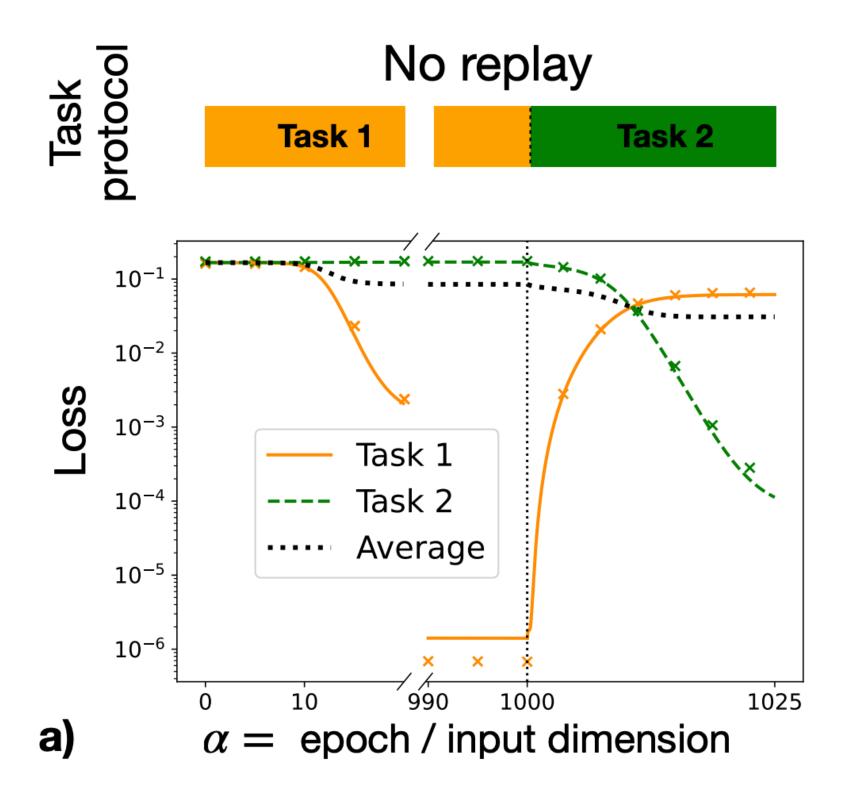
ODEs for the order parameters:



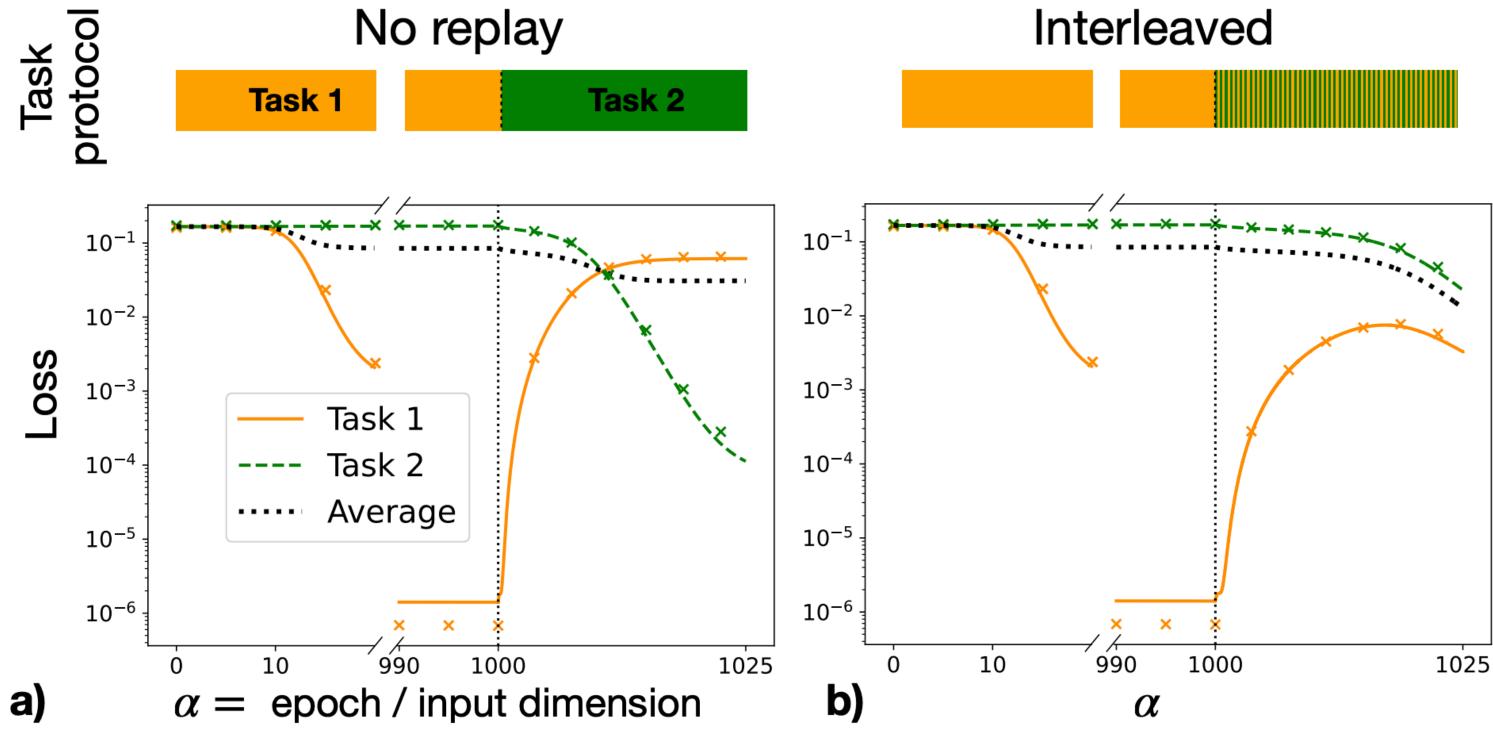
Example: "Magnetisation" $M_{kt} = \frac{W_k \cdot W_*^t}{N_t}$

N

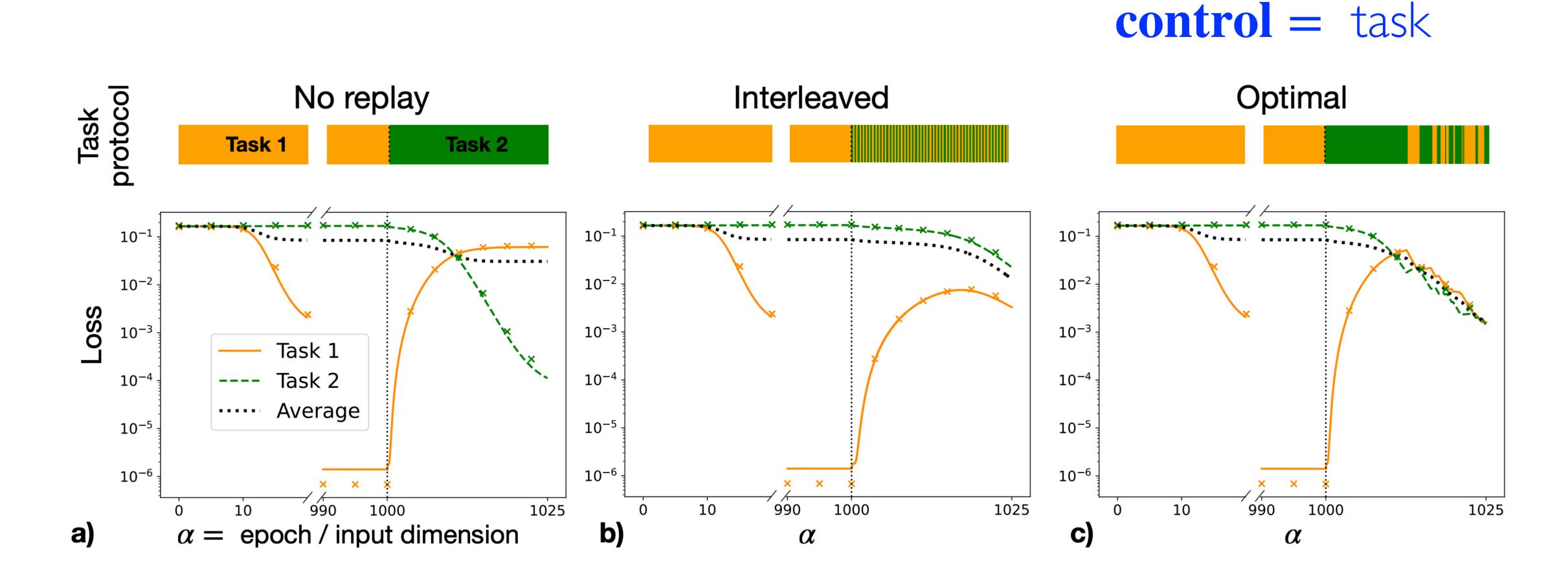
Results: optimal strategy vs benchmarks



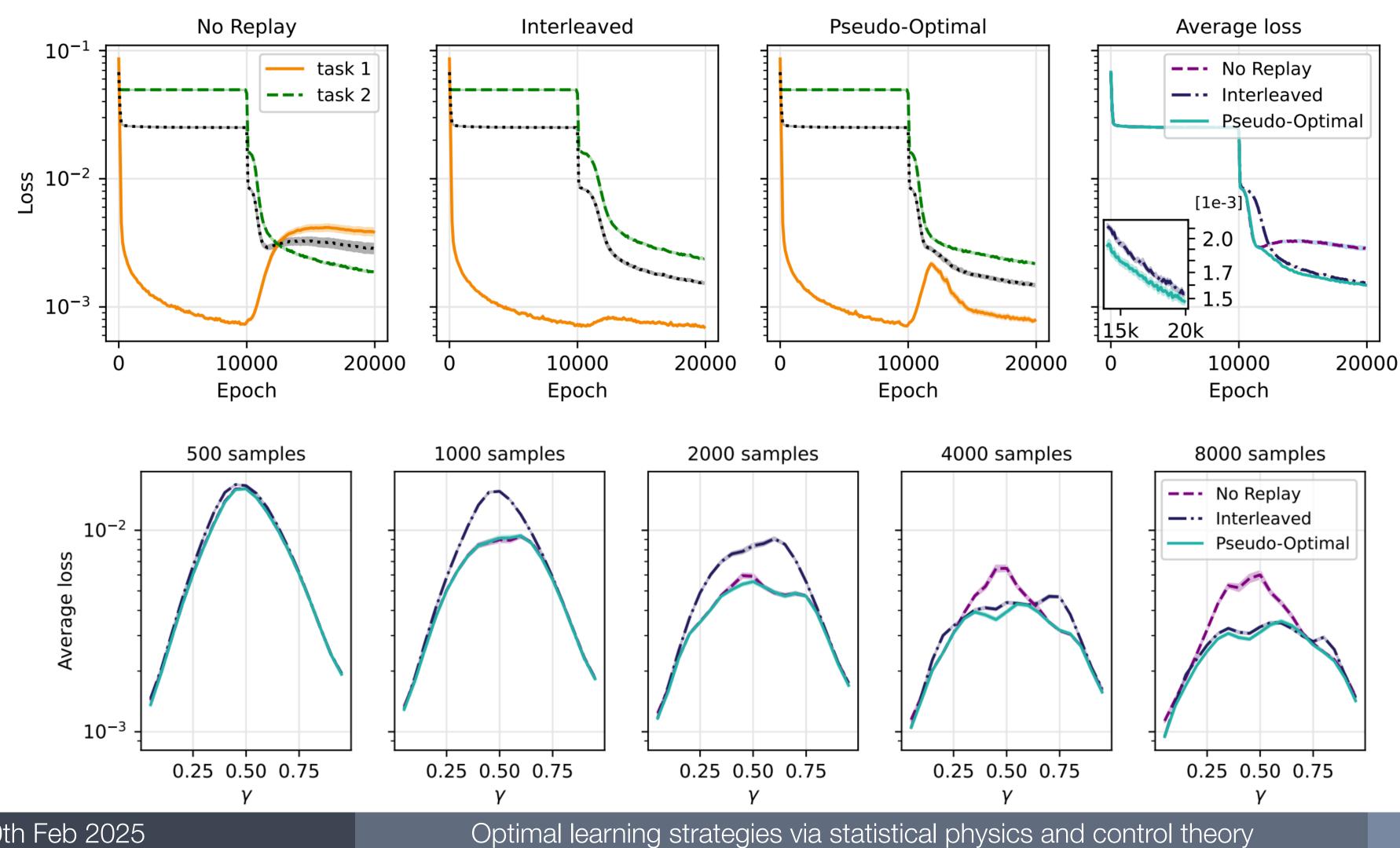
Results: optimal strategy vs benchmarks



Results: optimal strategy vs benchmarks



Experiments on Fashion MNIST

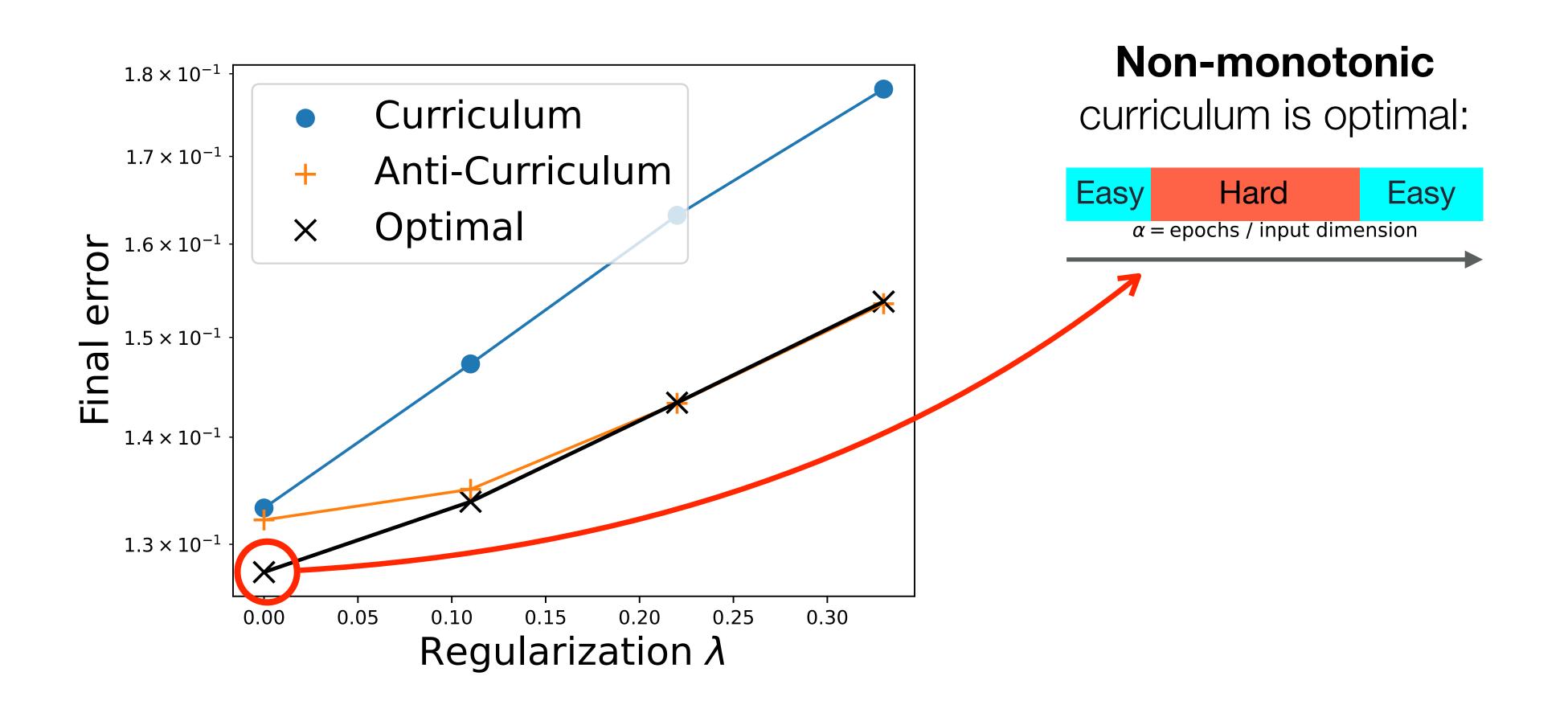


10th Feb 2025

 $\mathcal{D}_1 = \{ \boldsymbol{x}_i^{(1)}, y_i^{(1)} \}_i \qquad \mathcal{D}_2 = \{ \boldsymbol{x}_i^{(2)}, y_i^{(2)} \}_i = \{ \gamma \boldsymbol{x}_i^{(1)} + (1 - \gamma) \tilde{\boldsymbol{x}}_i, \gamma y_i^{(1)} + (1 - \gamma) \tilde{\boldsymbol{y}}_i \}_i$

Conclusions & Perspectives

Optimal curriculum learning

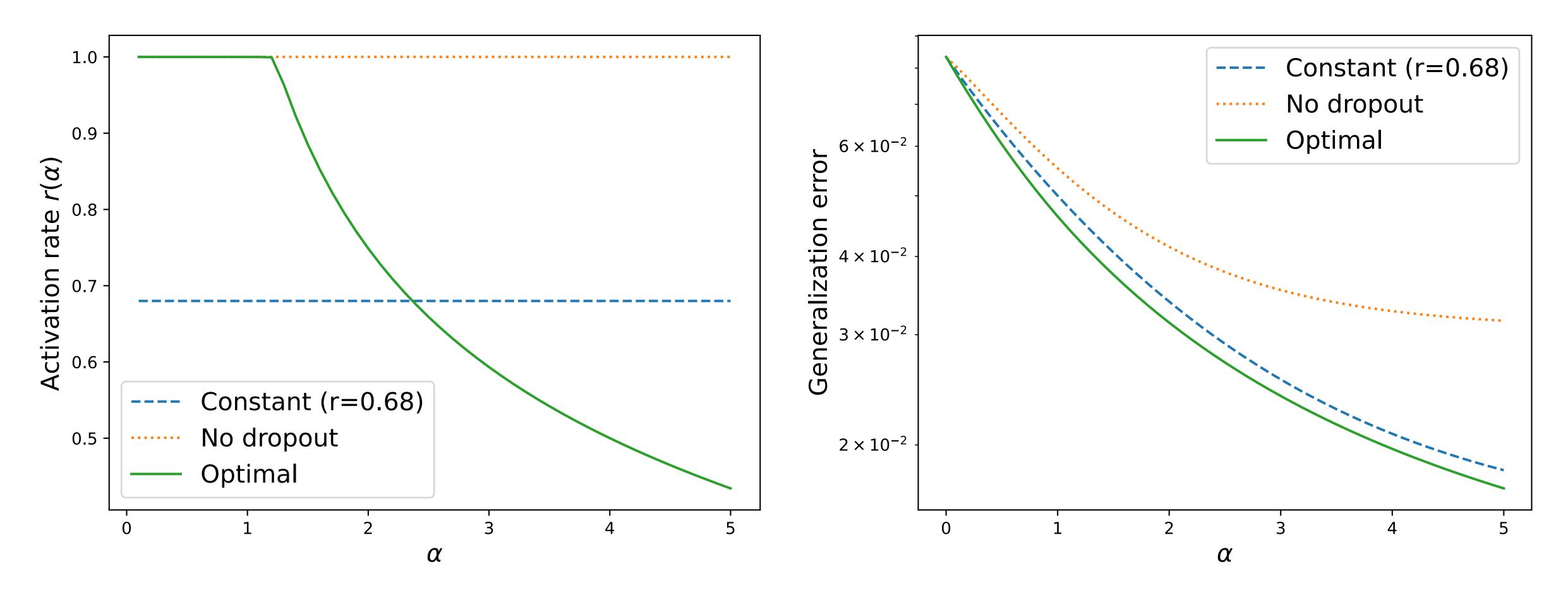


Optimal learning strategies via statistical physics and control theory

10/10

Conclusions & Perspectives

Optimal dropout



10/10

Conclusions & Perspectives

In summary:

Many open directions!

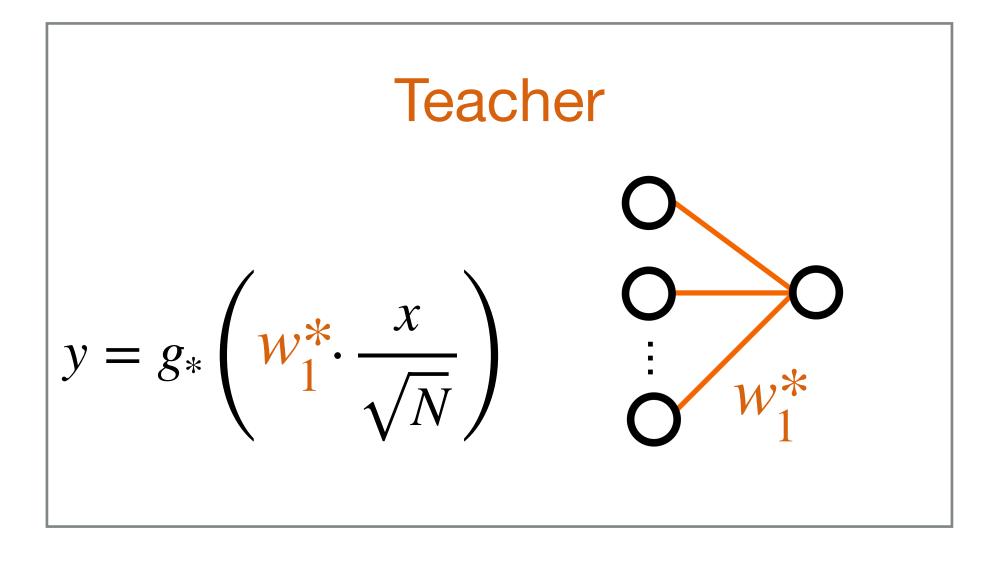
10th Feb 2025

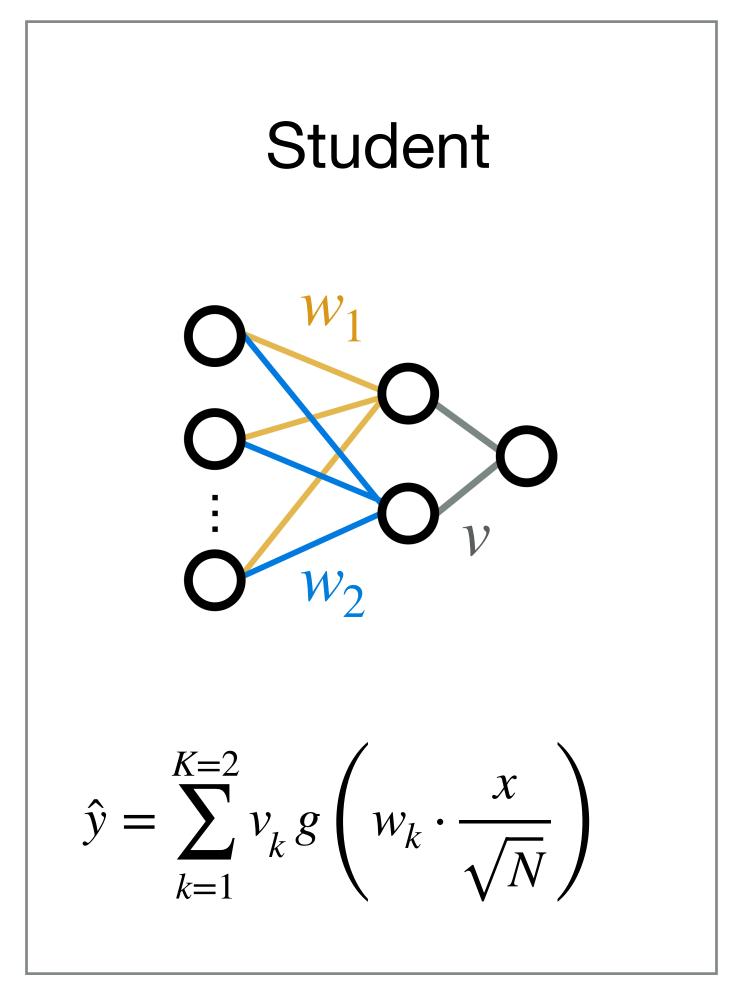


Thank you!

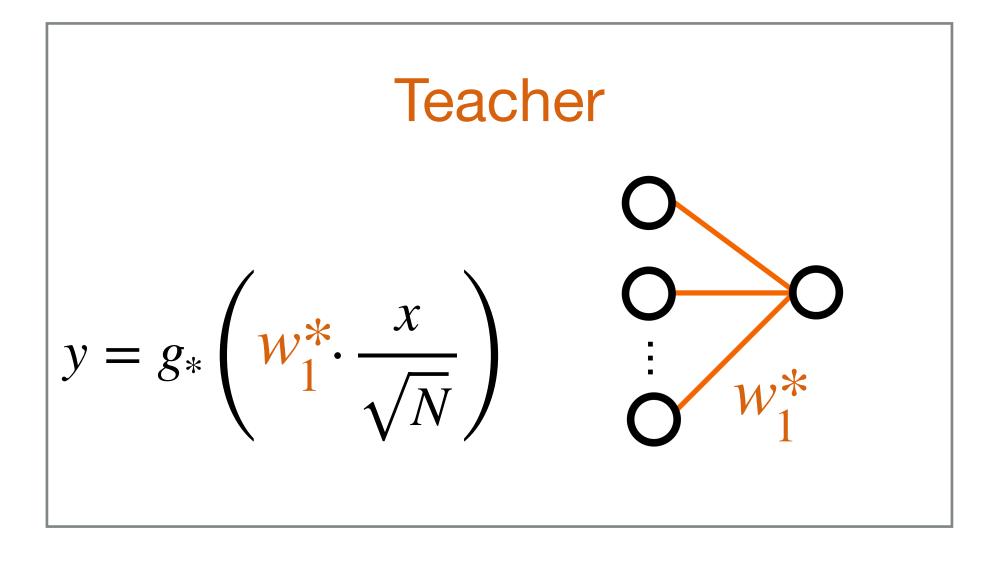
Bonus Slides

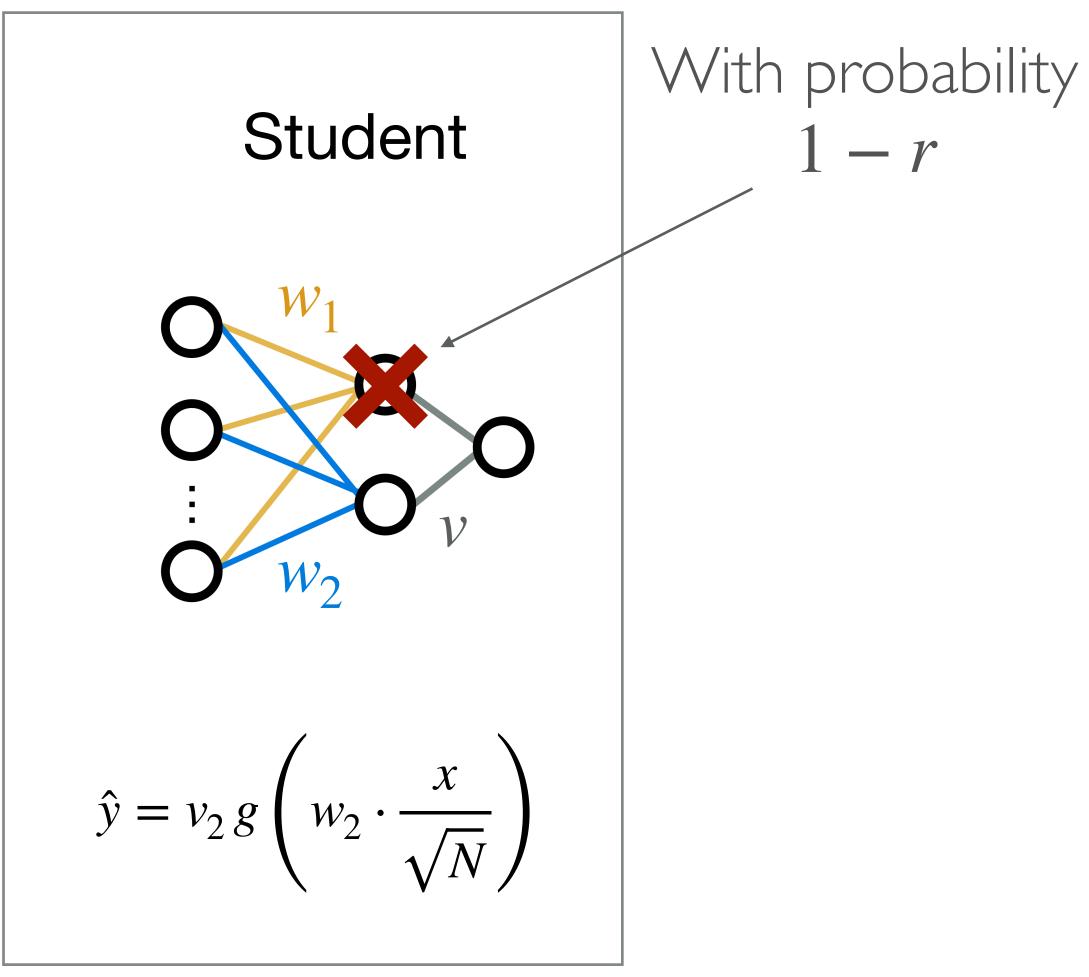
N. Srivastava, G. Hinton, et al., J. ML Res. (2014)

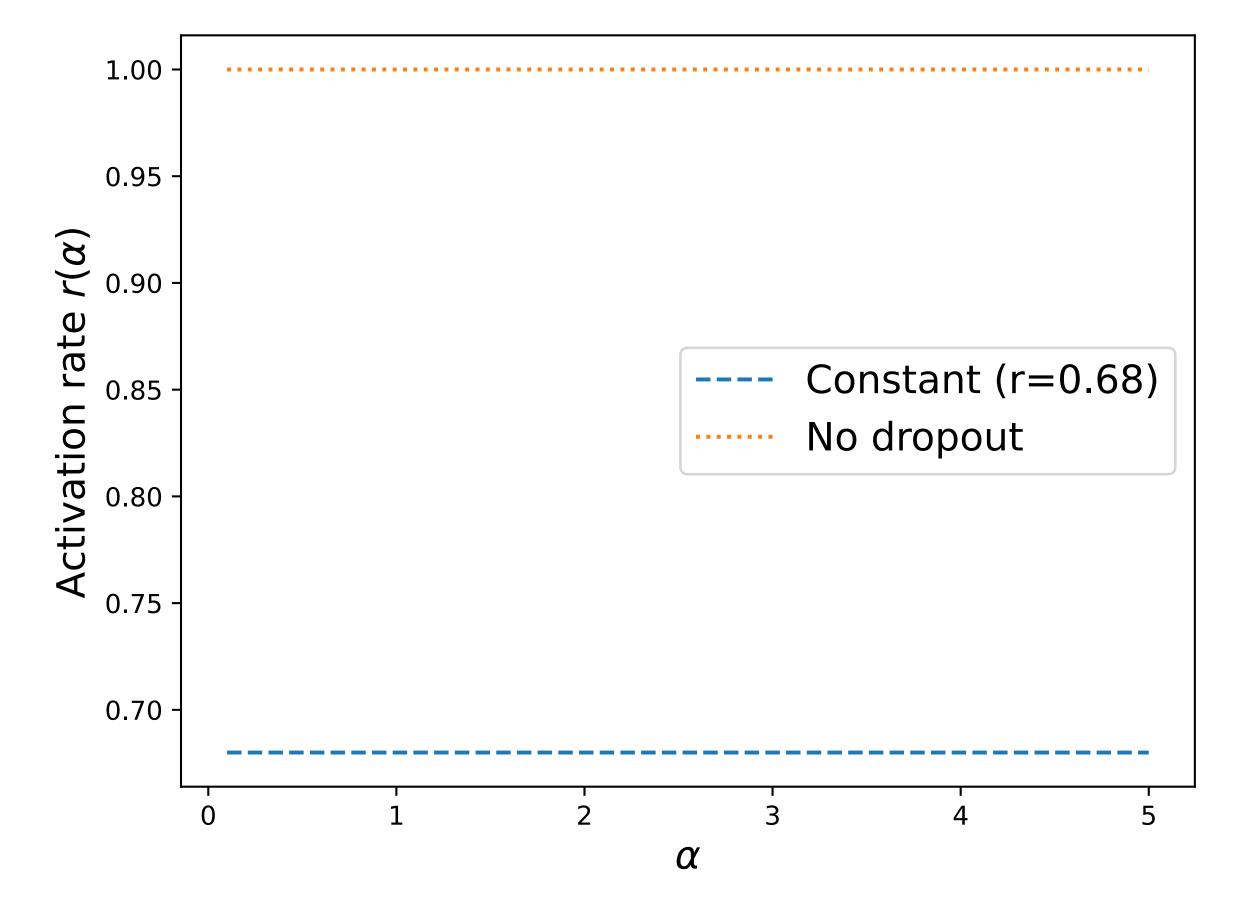


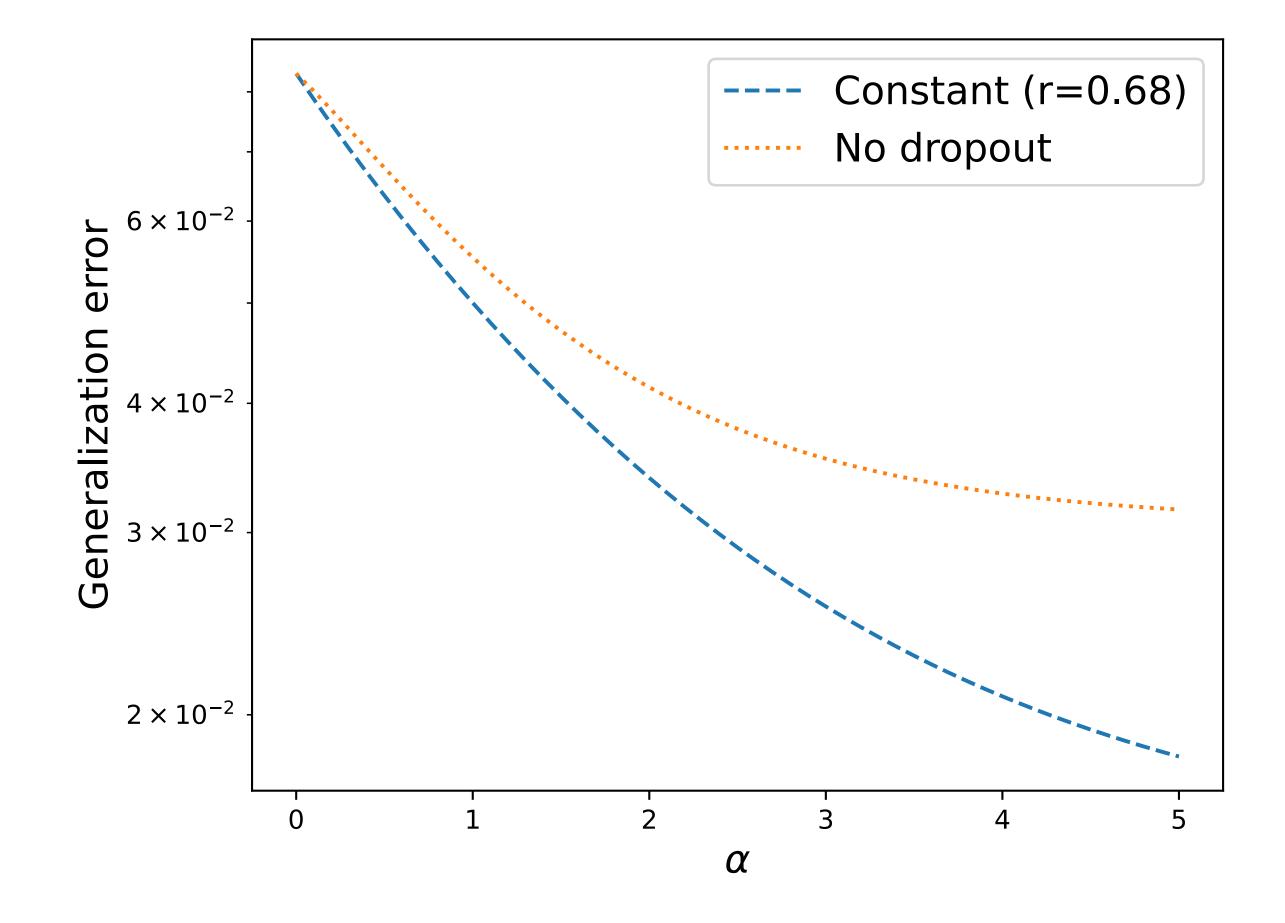


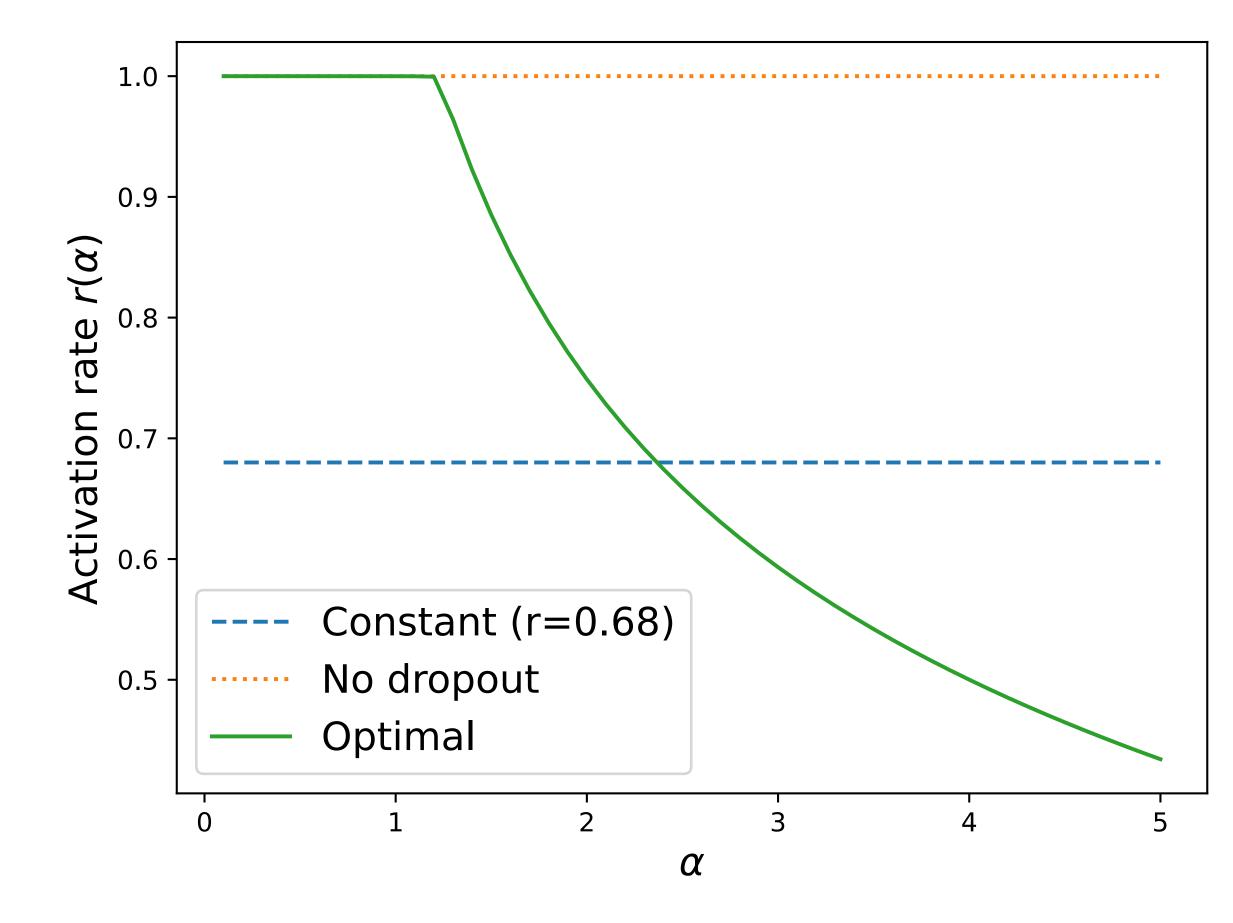
N. Srivastava, G. Hinton, et al., J. ML Res. (2014)

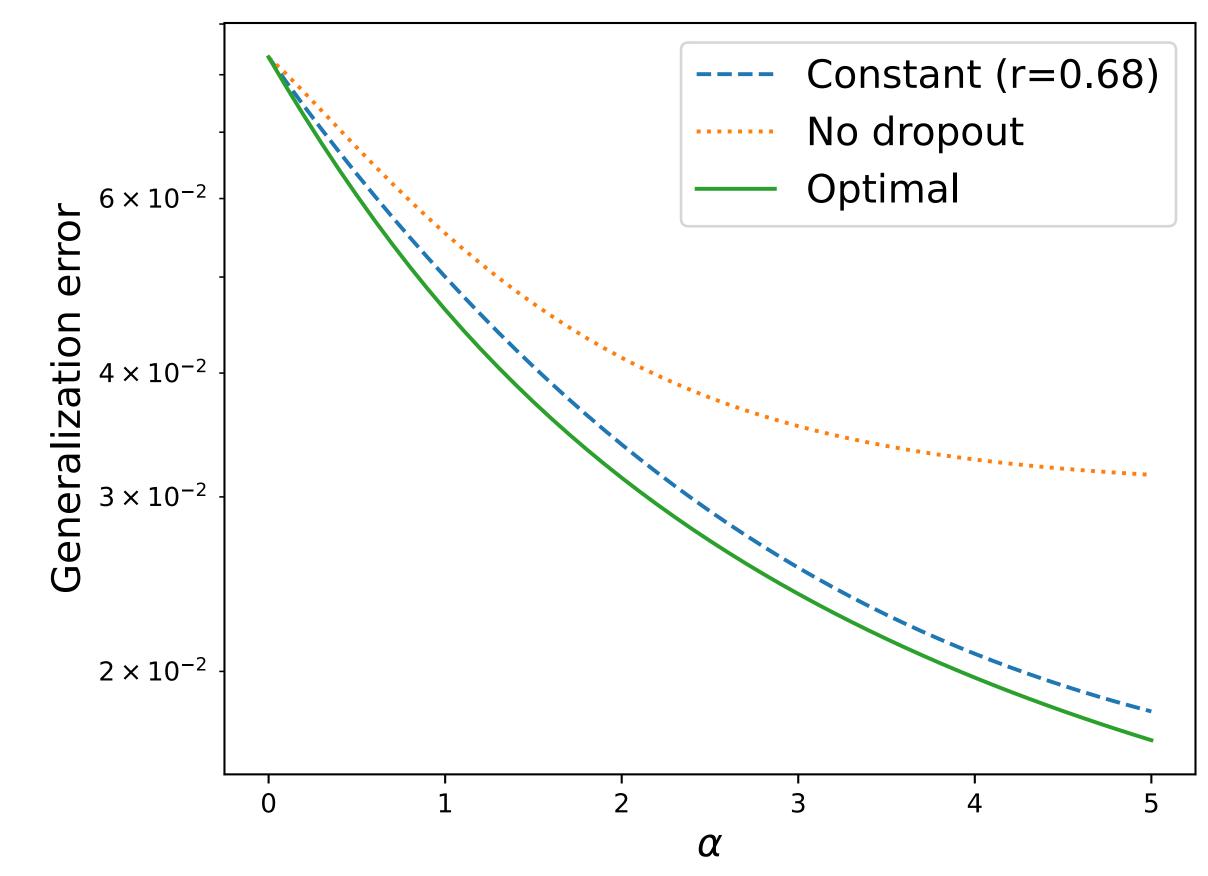


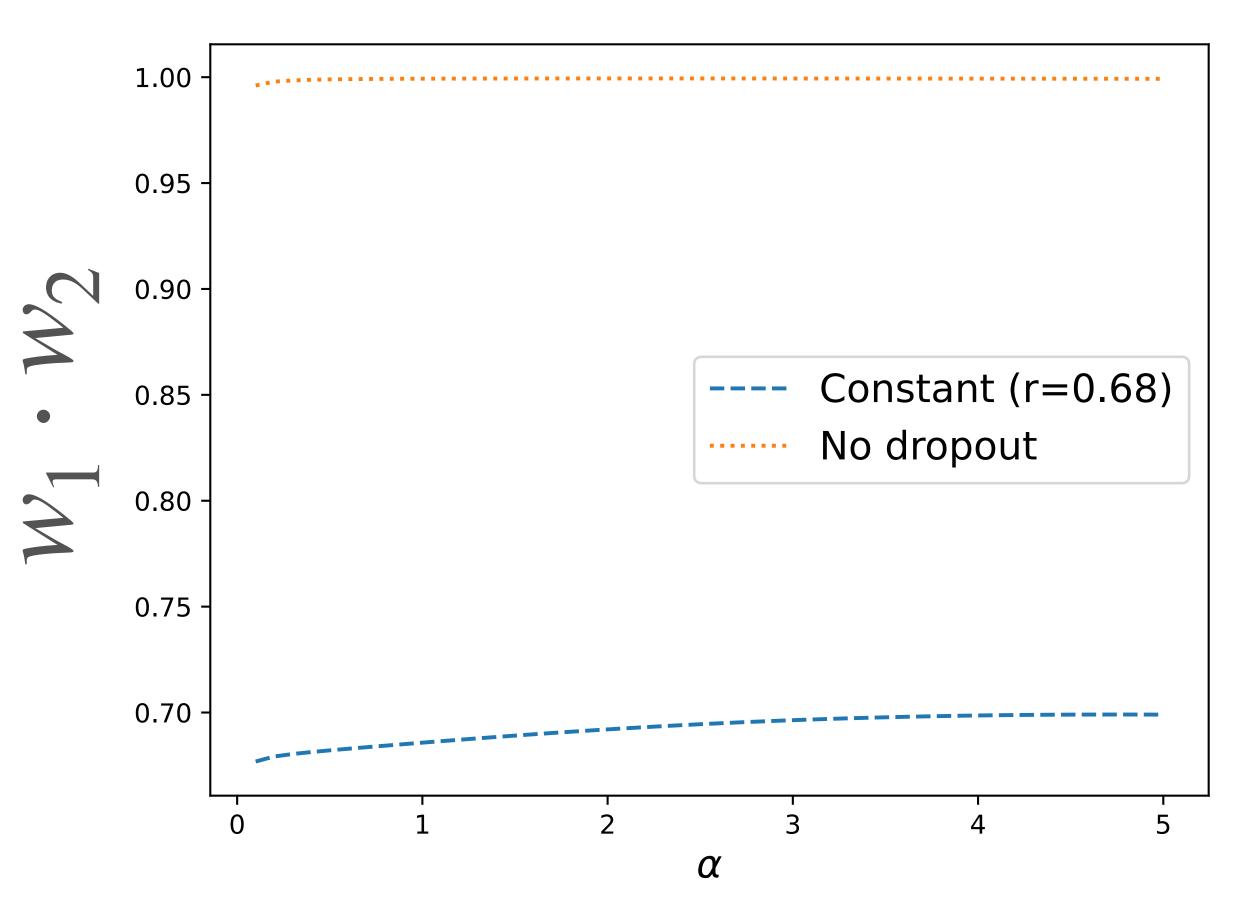


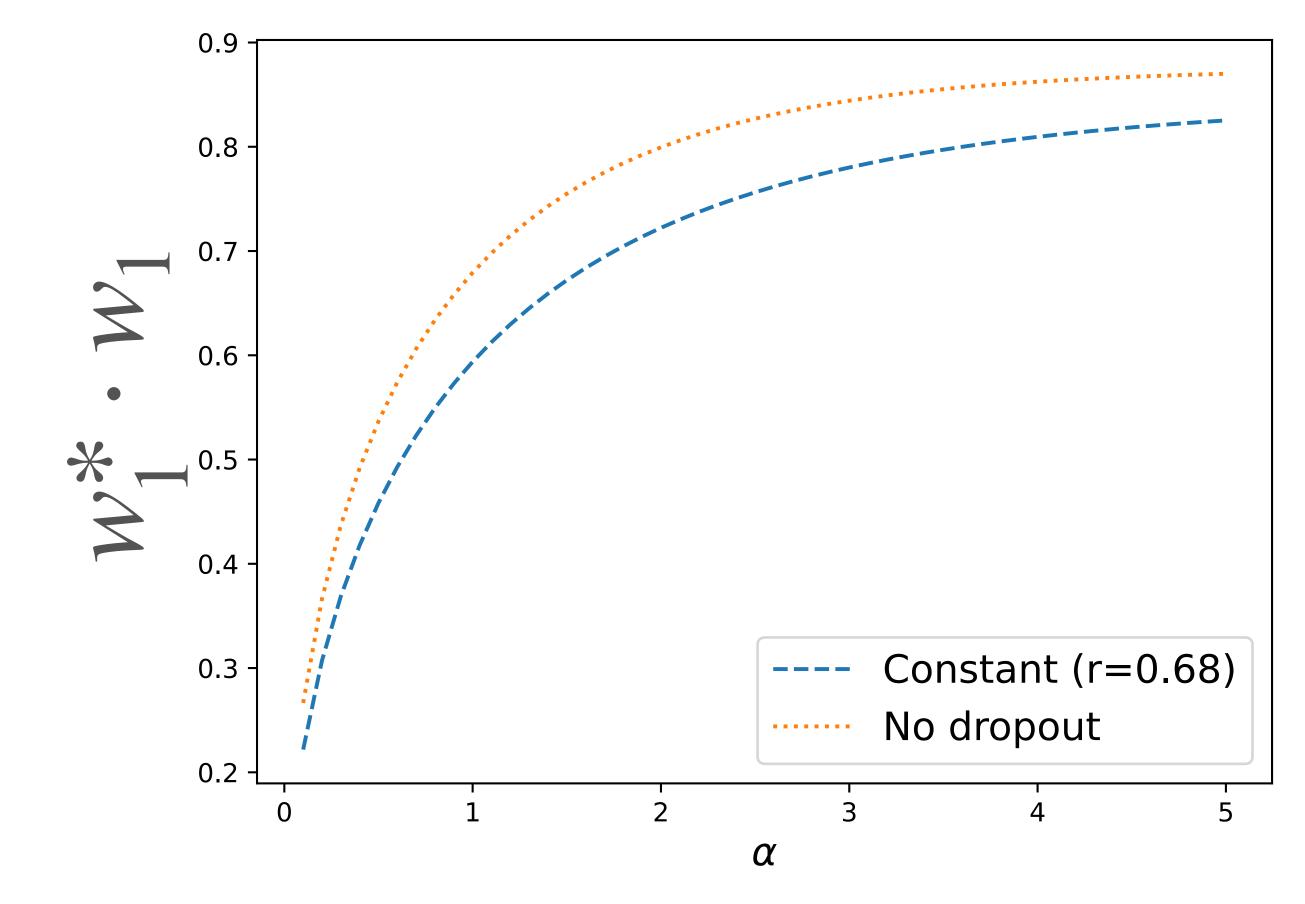


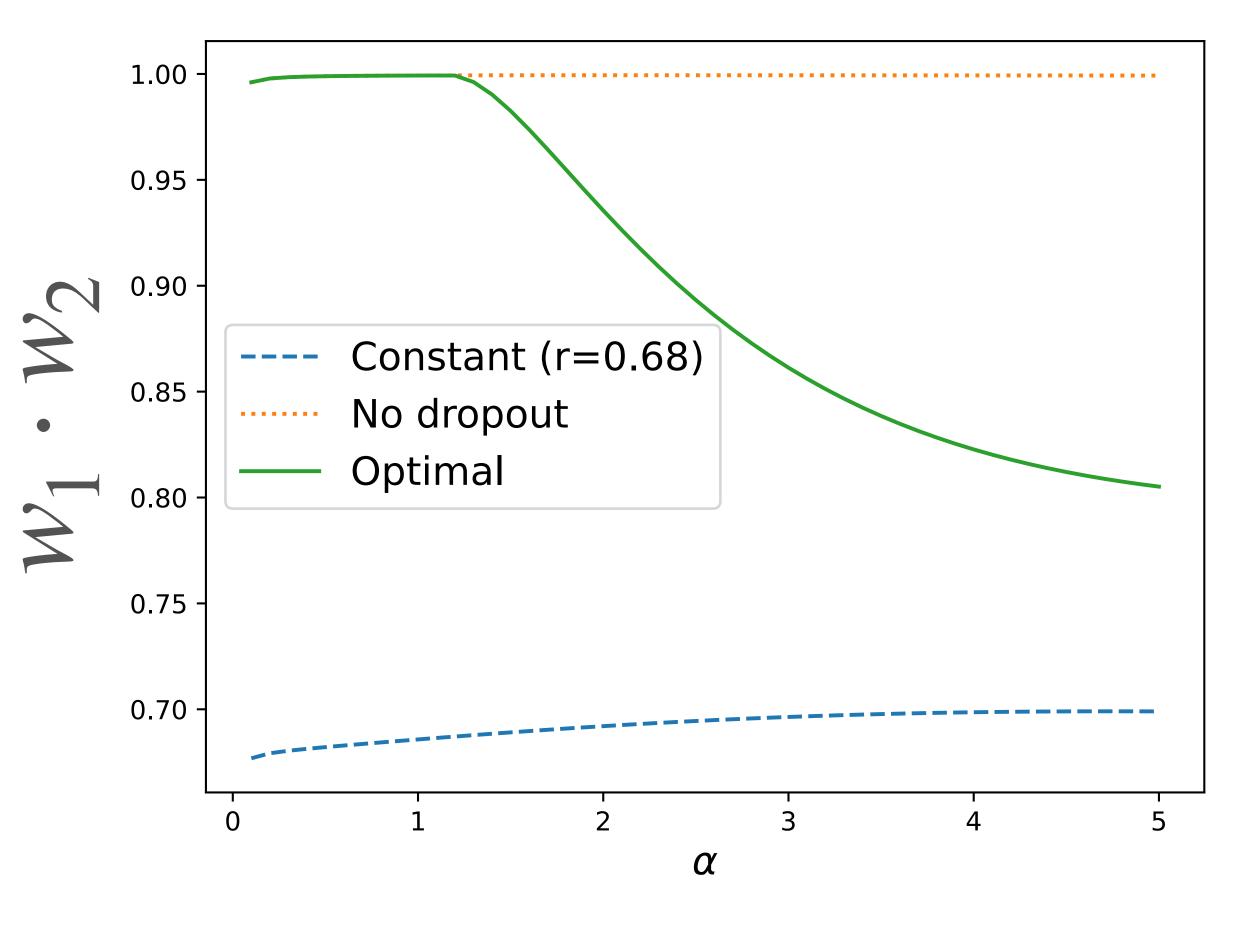


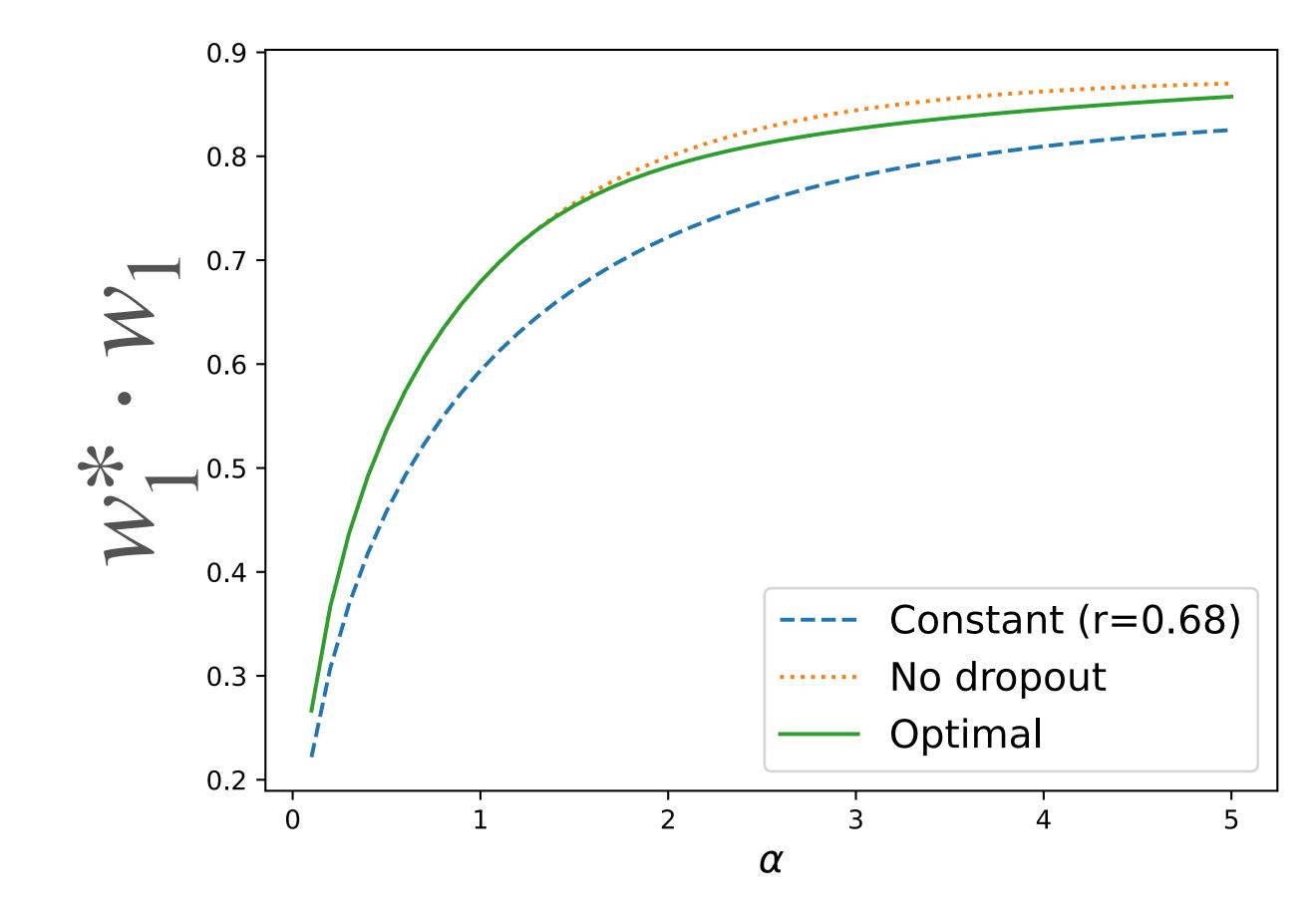












Curriculum learning (in progress)

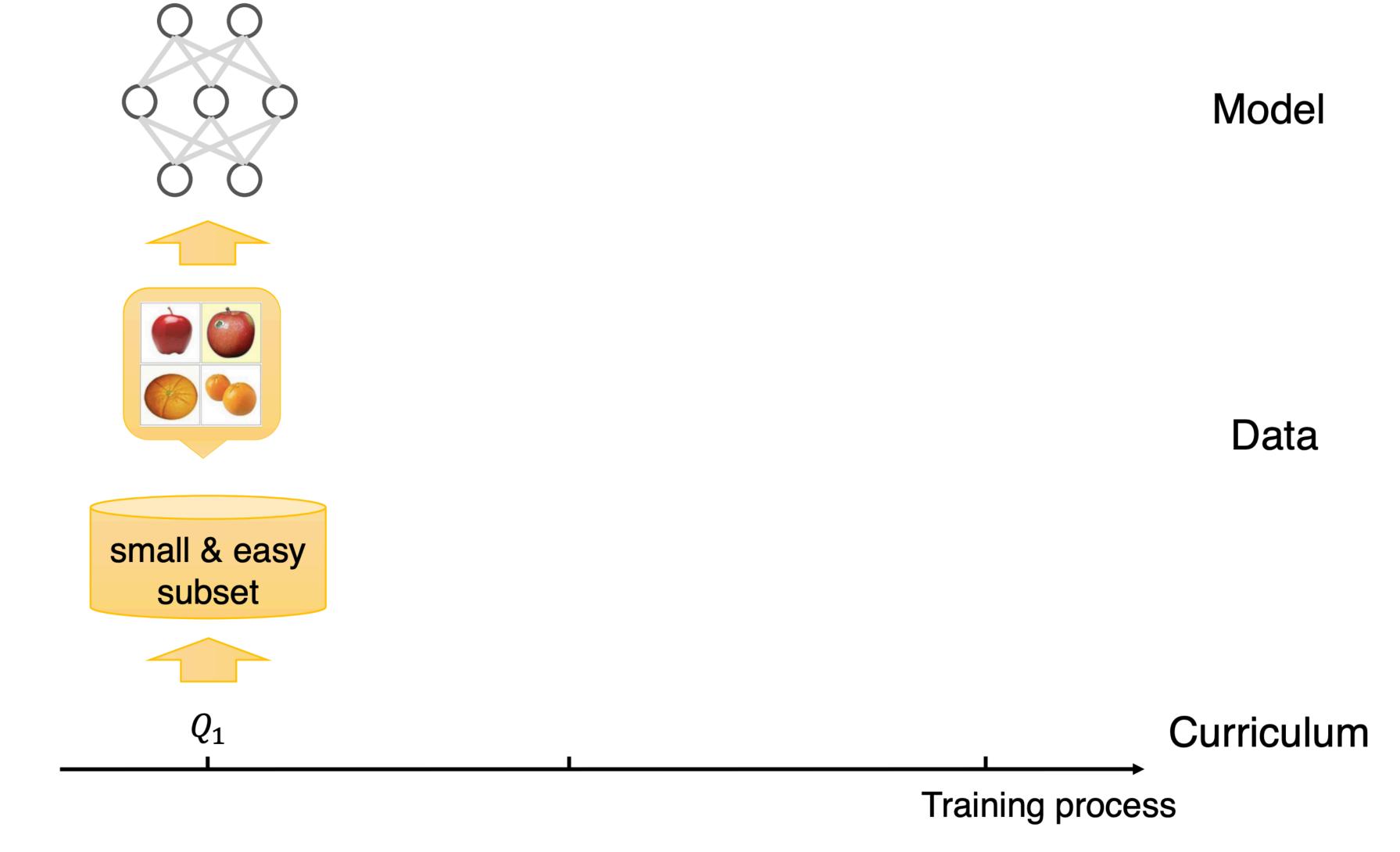


Image from: Wang, Xin, Yudong Chen, and Wenwu Zhu. IEEE transactions on pattern analysis and machine intelligence 44.9 (2021):4555-4576.

10th Feb 2025

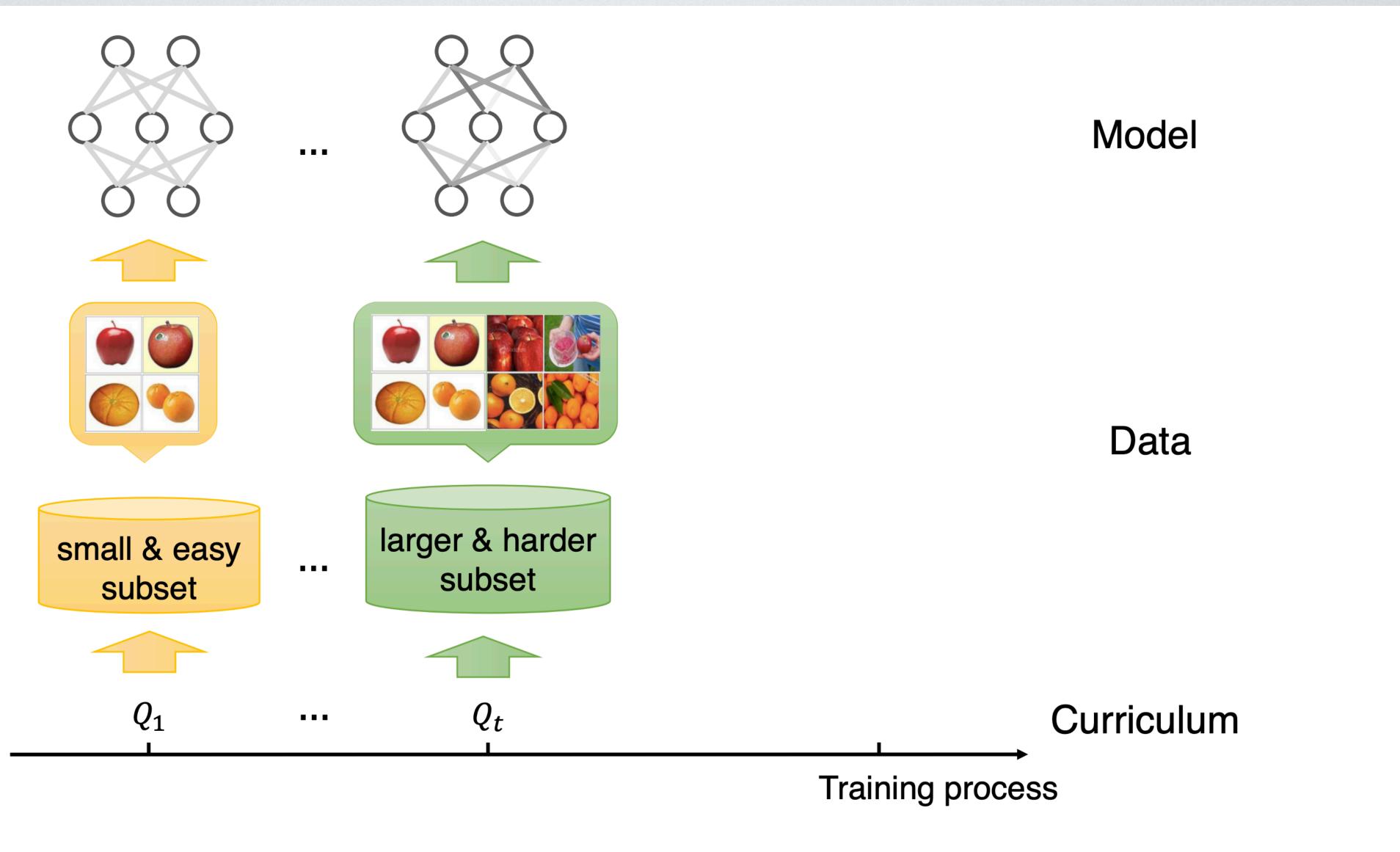


Image from: Wang, Xin, Yudong Chen, and Wenwu Zhu. IEEE transactions on pattern analysis and machine intelligence 44.9 (2021):4555-4576.

10th Feb 2025

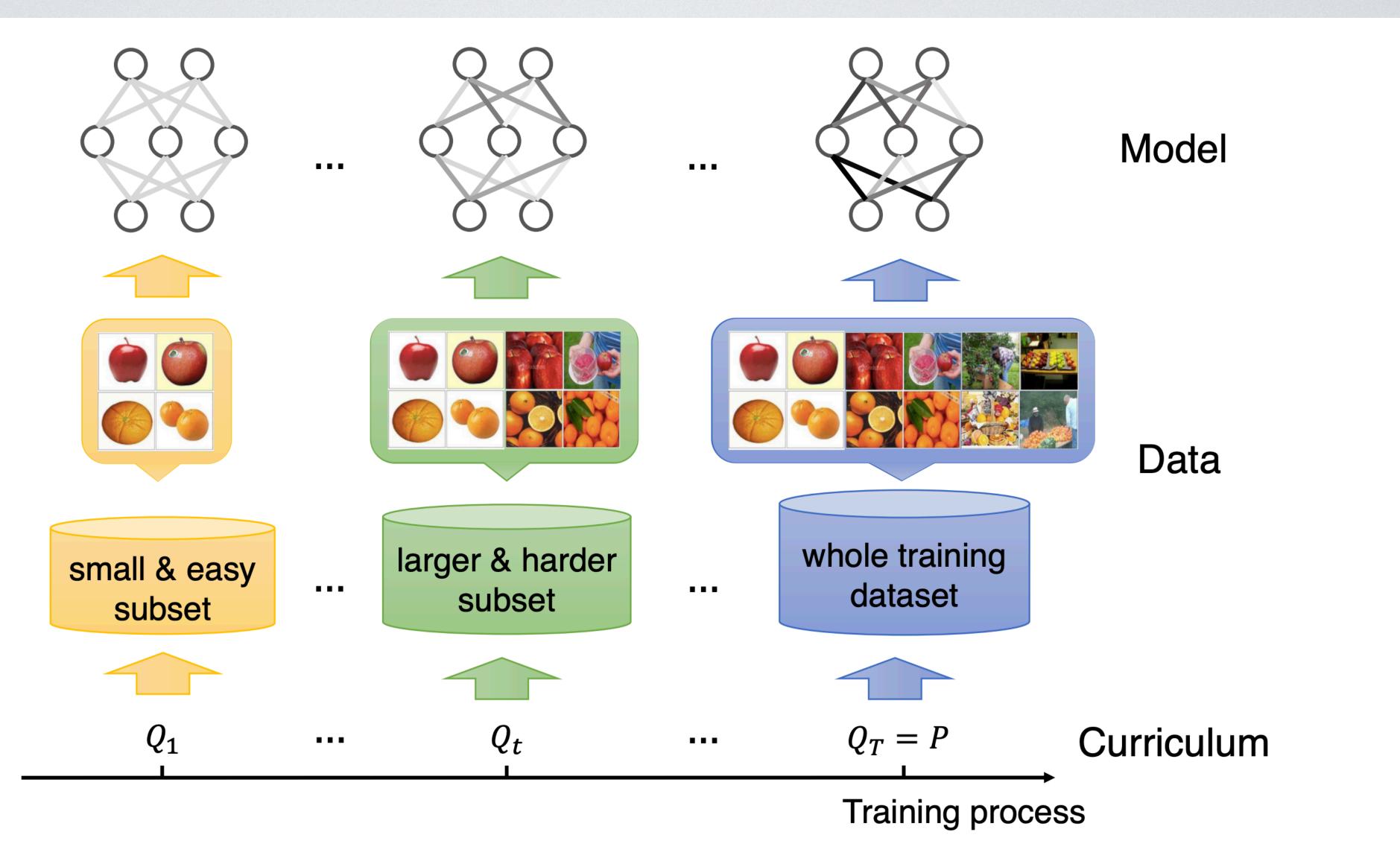


Image from: Wang, Xin, Yudong Chen, and Wenwu Zhu. IEEE transactions on pattern analysis and machine intelligence 44.9 (2021):4555-4576.

10th Feb 2025

Animals:

10th Feb 2025

Optimal learning strategies via statistical physics and control theory

Humans:

Animals:

ML (empirical):

Optimal learning strategies via statistical physics and control theory

Humans:

ML (theory):

Introduced in: Bengio, et al. (ICML 2009), Saglietti, et al. (NeurIPS 2022)

Input:
$$\mathbf{x} = (\mathbf{x}_r, \mathbf{x}_i) \in \mathbb{R}^N$$

tropped

Introduced in: Bengio, et al. (ICML 2009), Saglietti, et al. (NeurIPS 2022)

Input:
$$\mathbf{x} = (\mathbf{x}_r, \mathbf{x}_i) \in \mathbb{R}^N$$

teacher
teacher
 $\mathbf{x}_r \in \mathbb{R}^{\rho N}$
Unit variance
 $\mathbf{x}_i \in \mathbb{R}^{(1-\rho)N}$
Variance Δ
Teacher
 $\mathbf{y} = \operatorname{sign}(\mathbf{w}^* \cdot \mathbf{x}_r)$

Introduced in: Bengio, et al. (ICML 2009), Saglietti, et al. (NeurIPS 2022)

Input:
$$\mathbf{x} = (\mathbf{x}_r, \mathbf{x}_i) \in \mathbb{R}^N$$

treacher
treacher
treacher
v = sign($\mathbf{w}^* \cdot \mathbf{x}_r$)
v = sign($\mathbf{w}^* \cdot \mathbf{x}_r$)
treacher
v = sign($\mathbf{w}^* \cdot \mathbf{x}_r$)
treacher
v = sign($\mathbf{w}^* \cdot \mathbf{x}_r$)
v = erf $\left(\frac{\mathbf{w} \cdot \mathbf{x}}{\sqrt{2}}\right)$

Ridge-regularized MSE loss:

$$\mathscr{L} = \frac{1}{2}(y - \hat{y})^2 + \lambda \|$$

Optimal learning strategies via statistical physics and control theory

$\mathbf{W} \|_{2}^{2}$

An Analytical Theory of Curriculum Learning in **Teacher-Student Networks**

Luca Saglietti^{†,*}, Stefano Sarao Mannelli^{‡,*}, and Andrew Saxe^{‡,§}

The evolution of the dynamics can be tracked using four order parameters:

$$egin{aligned} Q_r &= rac{1}{N} \, oldsymbol{W}_r \cdot oldsymbol{W}_r, & R &= rac{1}{N} \, oldsymbol{W}_r \cdot oldsymbol{W}_r \\ Q_i &= rac{1}{N} \, oldsymbol{W}_i \cdot oldsymbol{W}_i, & T &= rac{1}{N} \, oldsymbol{W}_T \cdot oldsymbol{W}_r \end{aligned}$$

 $\boldsymbol{W}_{T},$

 W_T ;

An Analytical Theory of Curriculum Learning in **Teacher-Student Networks**

Luca Saglietti^{†,*}, Stefano Sarao Mannelli^{‡,*}, and Andrew Saxe^{‡,§}

The evolution of the dynamics can be tracked using four order parameters:

$$egin{aligned} Q_r &= rac{1}{N} \, oldsymbol{W}_r \cdot \, oldsymbol{W}_r, & R &= rac{1}{N} \, oldsymbol{W}_r \cdot \, oldsymbol{V} \ Q_i &= rac{1}{N} \, oldsymbol{W}_i \cdot \, oldsymbol{W}_i, & T &= rac{1}{N} \, oldsymbol{W}_T \cdot \, oldsymbol{V} \end{aligned}$$

$$Q_r \leftarrow f_{Q_r}(Q_r, Q_i, R, T)$$
$$Q_i \leftarrow f_{Q_i}(Q_r, Q_i, R, T)$$
$$R \leftarrow f_R(Q_r, Q_i, R, T)$$

 $\boldsymbol{W}_{T},$

 \boldsymbol{W}_{T} ;

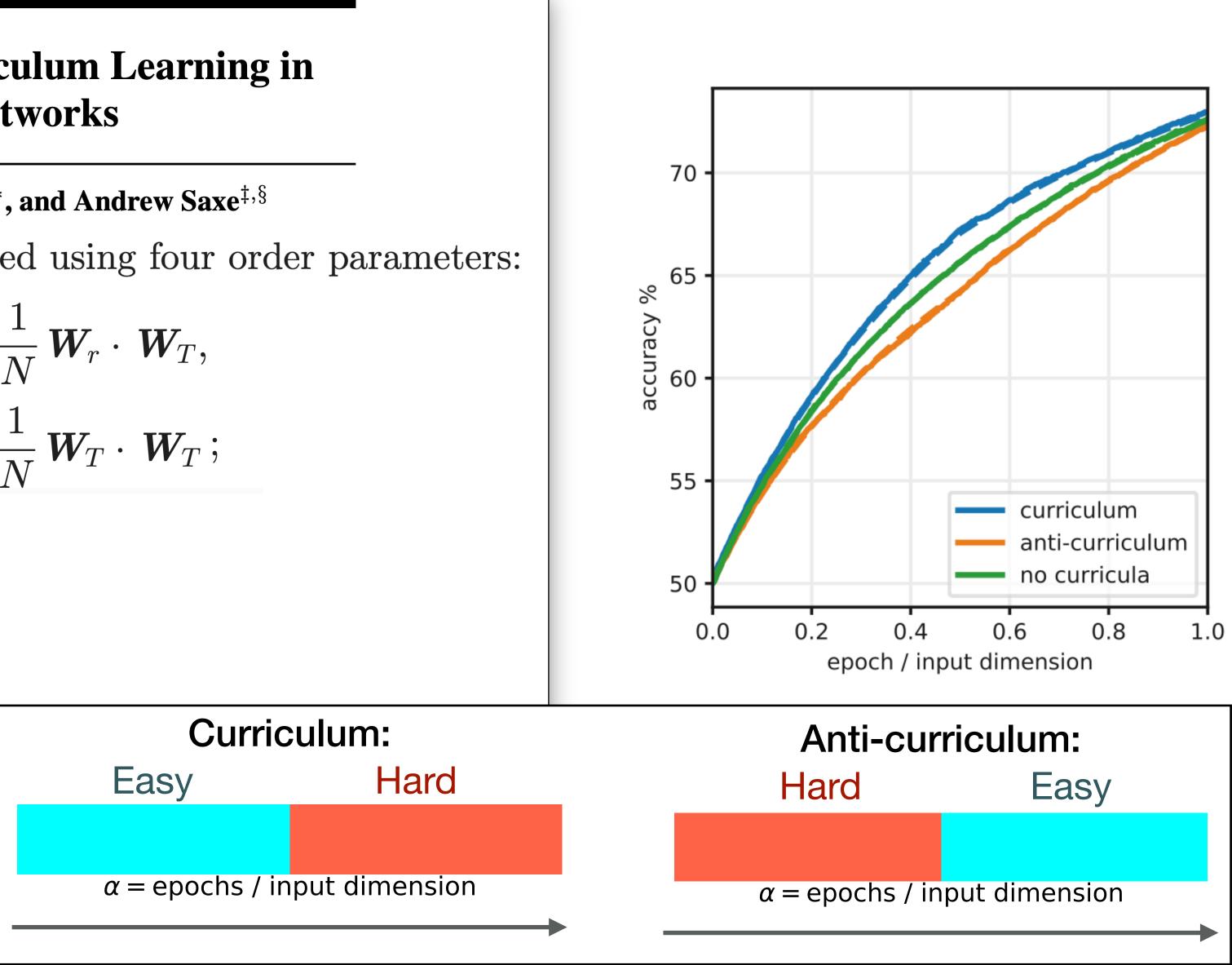
An Analytical Theory of Curriculum Learning in **Teacher-Student Networks**

Luca Saglietti^{†,*}, Stefano Sarao Mannelli^{‡,*}, and Andrew Saxe^{‡,§}

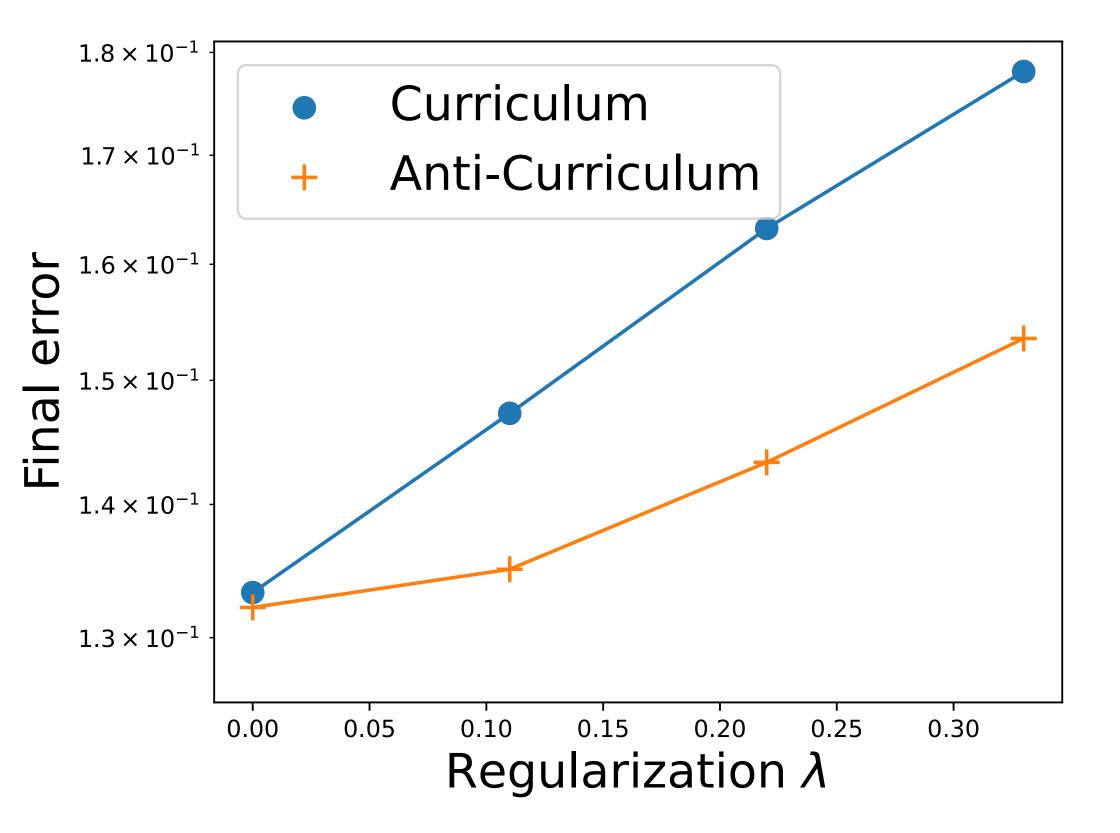
The evolution of the dynamics can be tracked using four order parameters:

$$egin{aligned} Q_r &= rac{1}{N} \, oldsymbol{W}_r \cdot \, oldsymbol{W}_r, & R &= rac{1}{N} \, oldsymbol{W}_r \cdot \, oldsymbol{V} \ Q_i &= rac{1}{N} \, oldsymbol{W}_i \cdot \, oldsymbol{W}_i, & T &= rac{1}{N} \, oldsymbol{W}_T \cdot \, oldsymbol{V} \end{aligned}$$

$$Q_r \leftarrow f_{Q_r}(Q_r, Q_i, R, T)$$
$$Q_i \leftarrow f_{Q_i}(Q_r, Q_i, R, T)$$
$$R \leftarrow f_R(Q_r, Q_i, R, T)$$

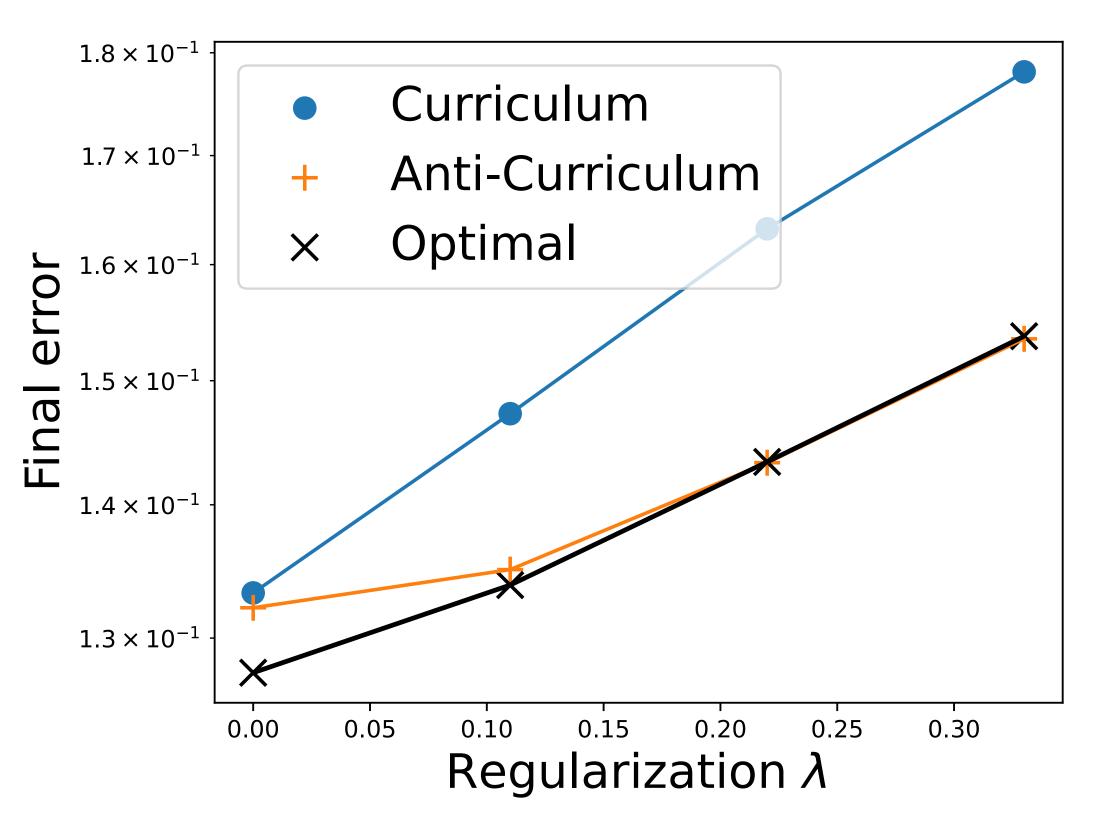


10th Feb 2025



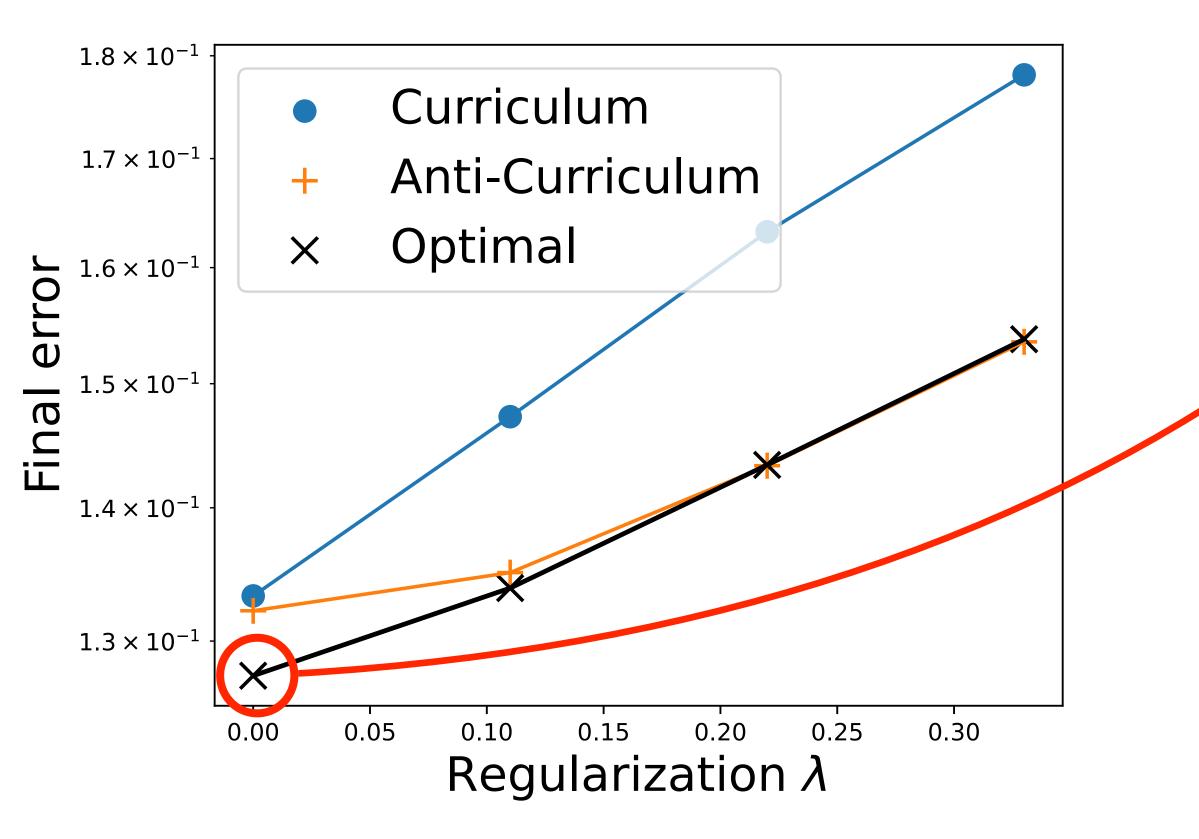
Control: $\mathbf{u} = \boldsymbol{\Delta}$

 $\rho = 0.55, \eta = 2.58$



Control: $\mathbf{u} = \boldsymbol{\Delta}$

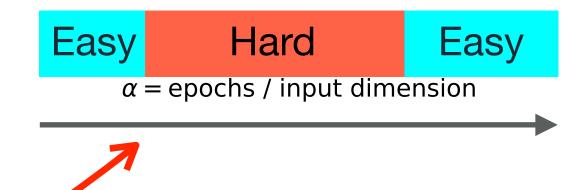
 $\rho = 0.55, \eta = 2.58$

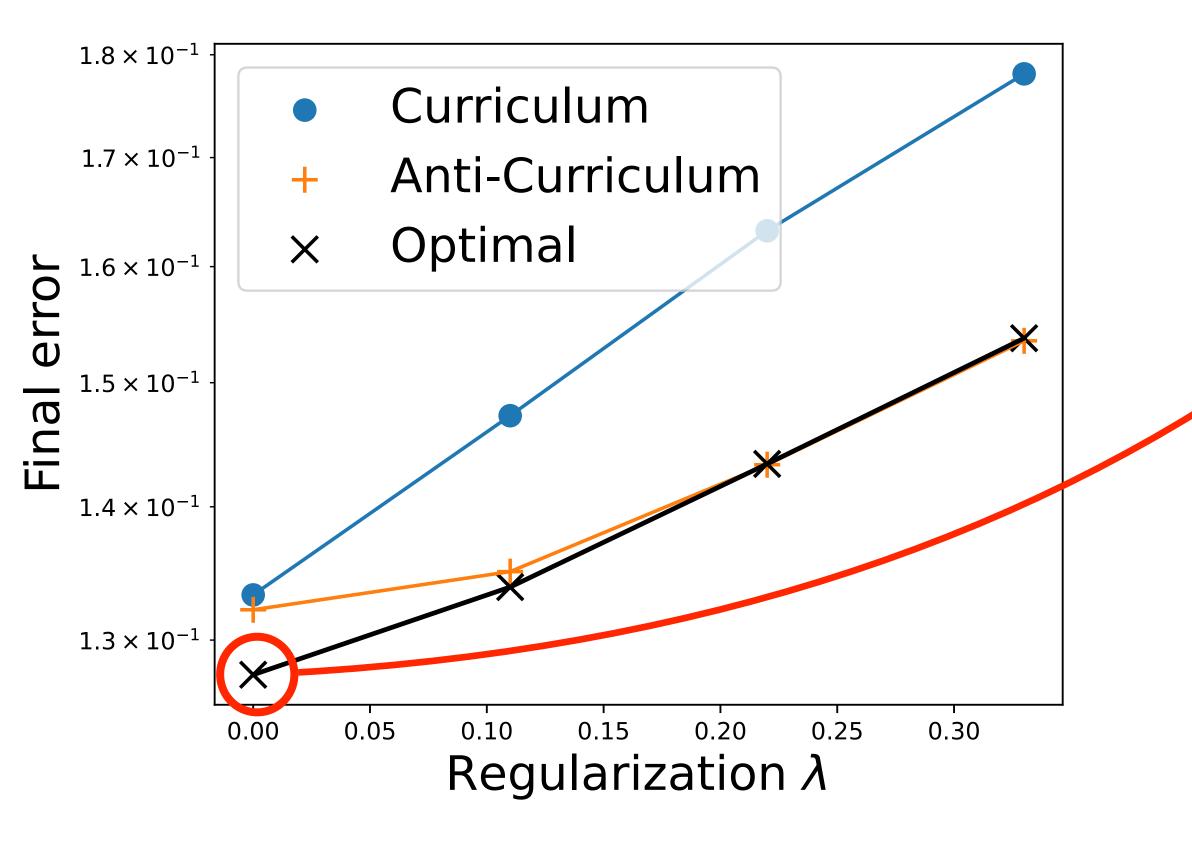


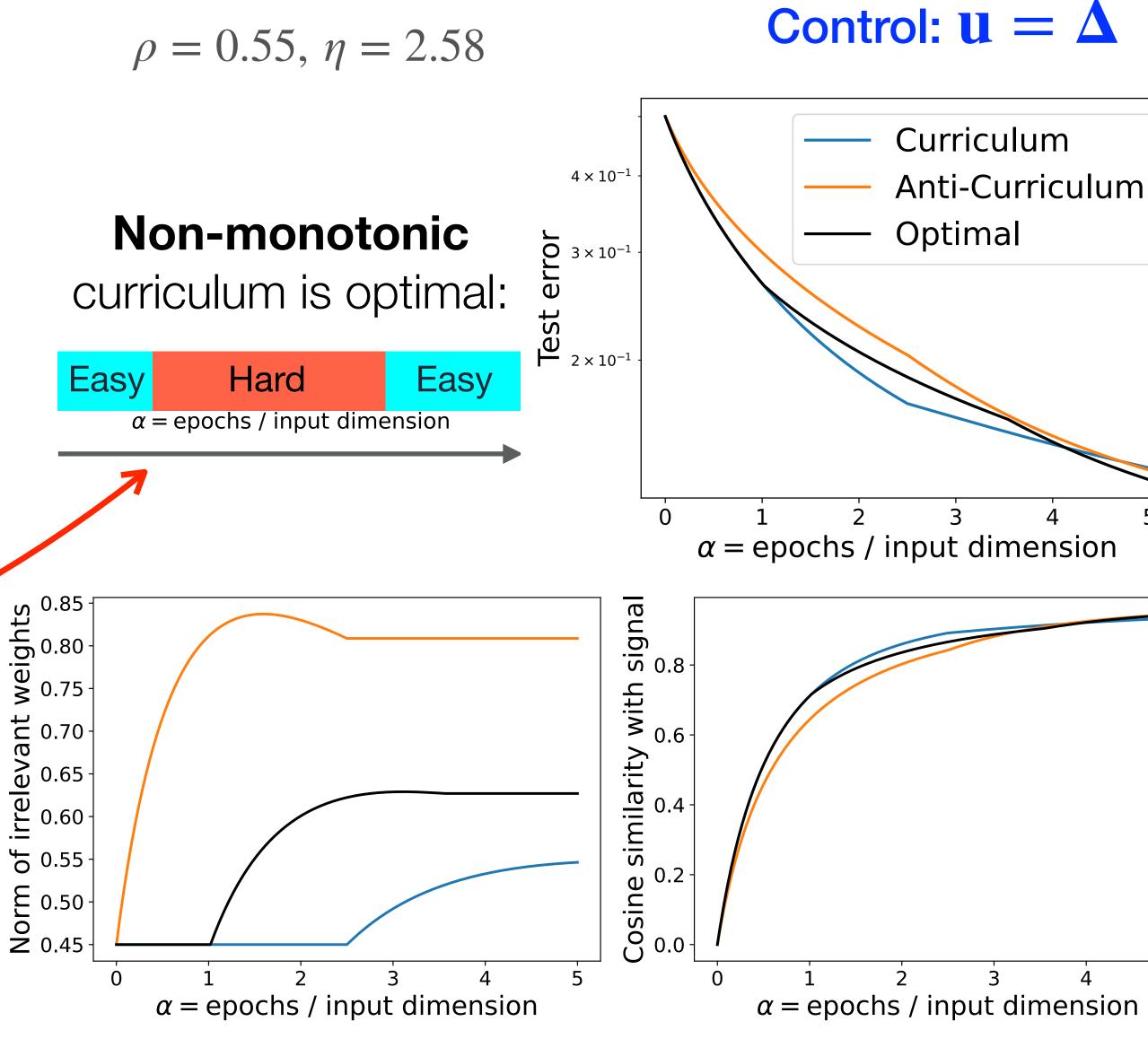
 $\rho = 0.55, \eta = 2.58$

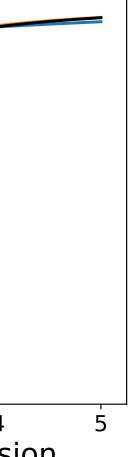
Non-monotonic

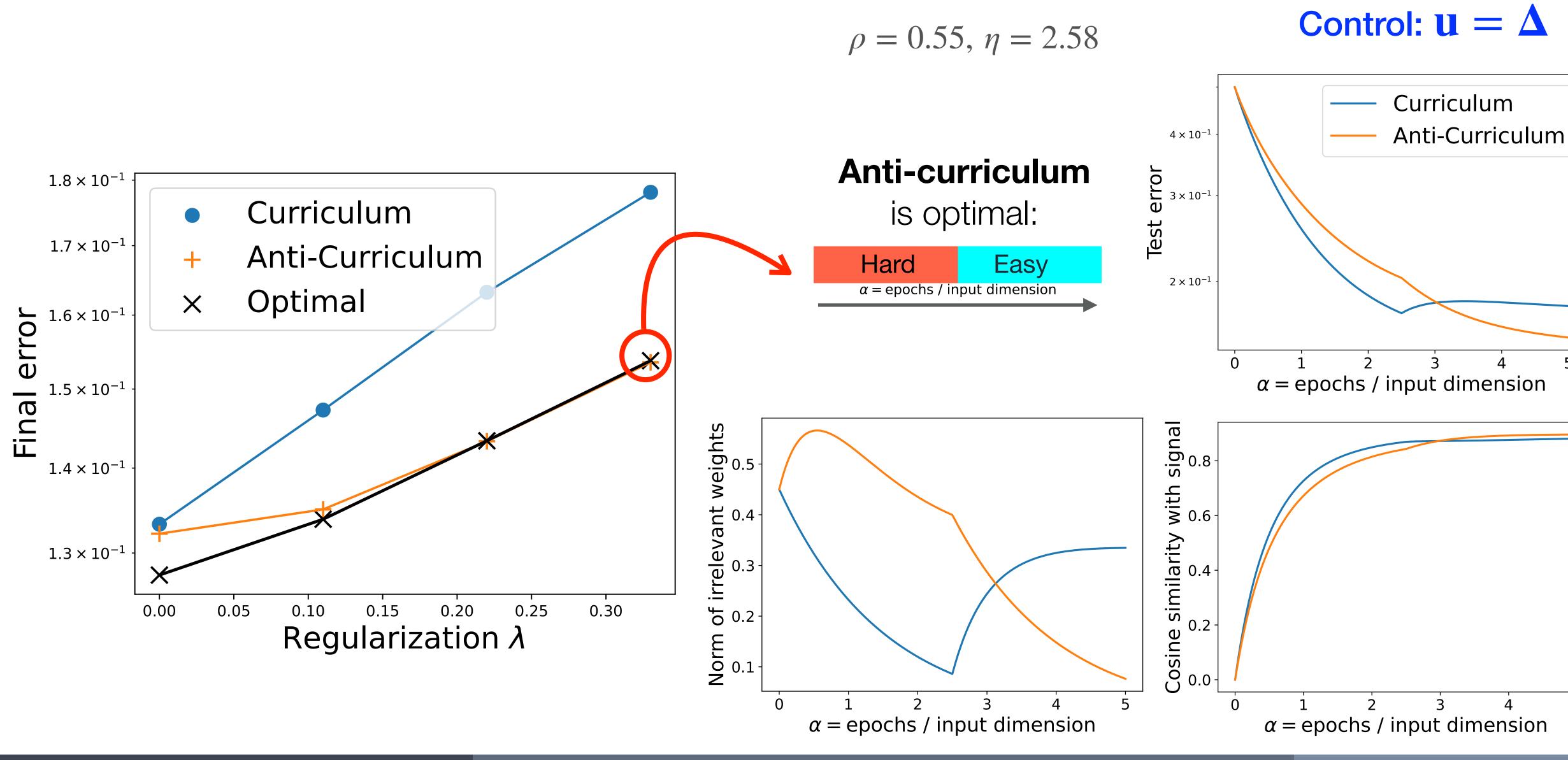
curriculum is optimal:





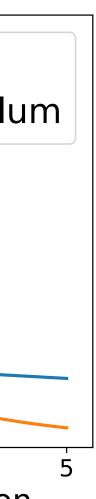


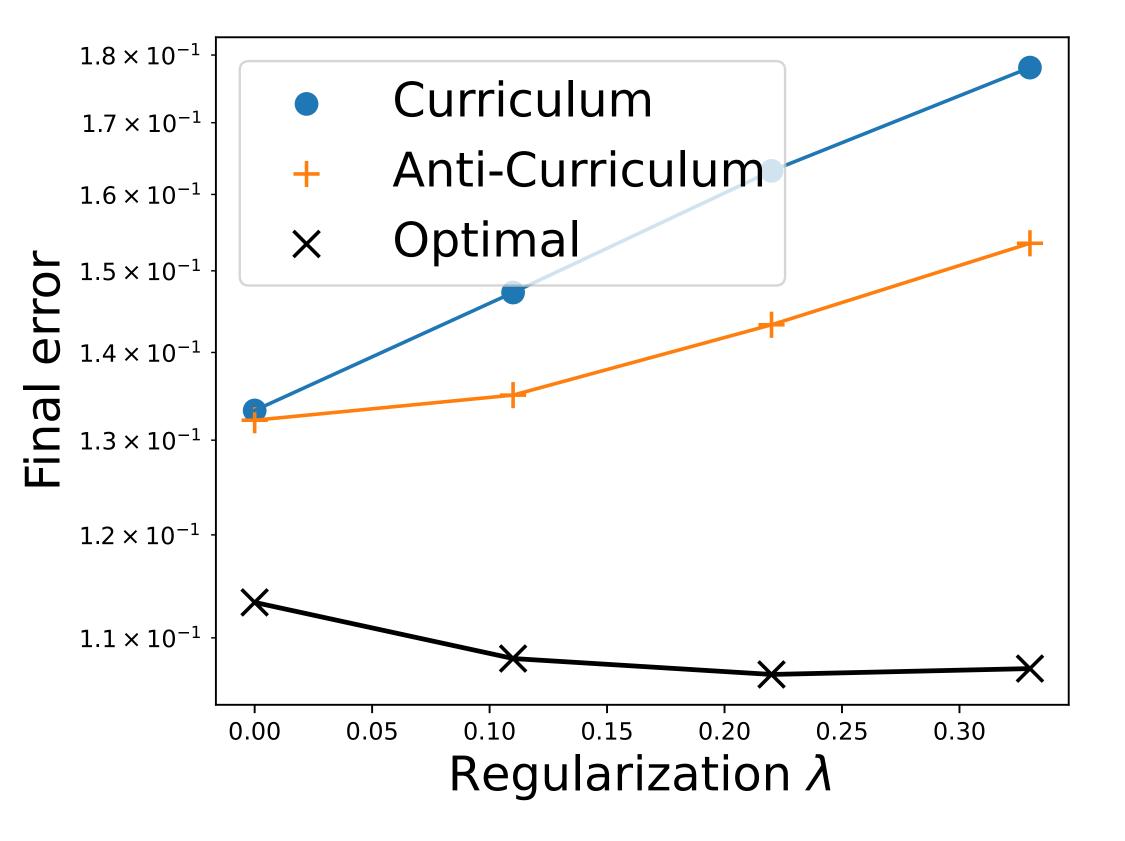


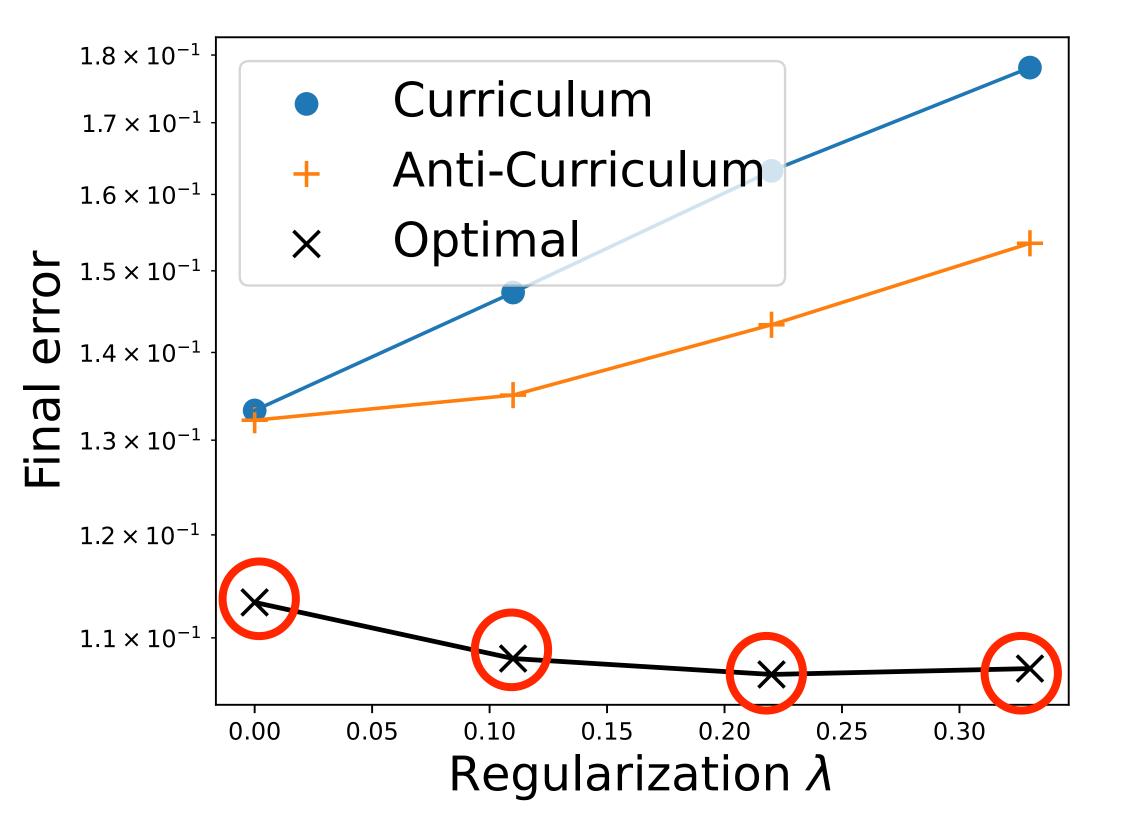


Optimal learning strategies via statistical physics and control theory

20

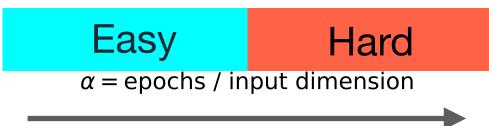


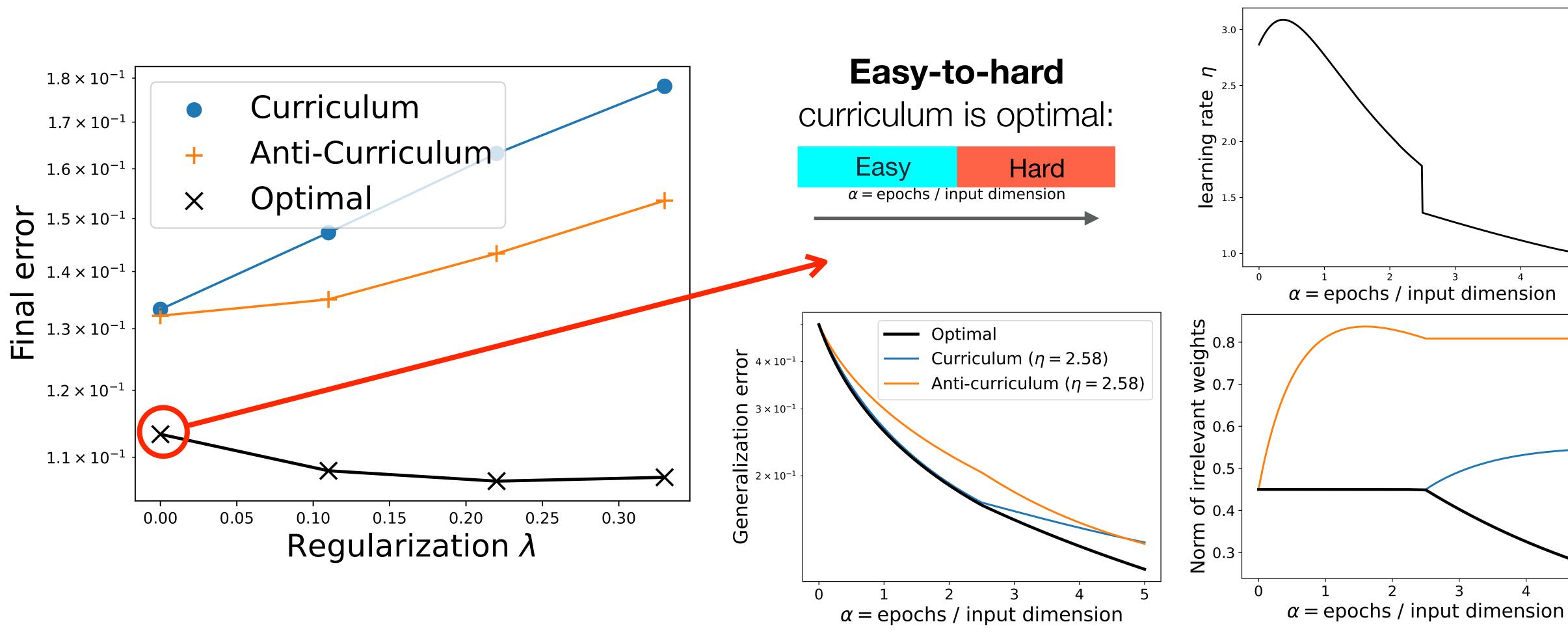




Easy-to-hard

curriculum is optimal:





	- - 5	
n	5	