
Probabilistic
Programming 
and Machine Learning

Sam Staton  
Oxford Computer Science

Probabilistic programming is...
Writing statistical models 
by writing programs.

Ref: Intro to prob prog (van de Meent, Paige, Yang, Wood) arxiv:1809.10756

Probabilistic programming is...
Writing statistical models 
by writing programs.
Statistical models Inference algorithms

Covid-19 models
Large Hadron Collider models
Encoder / decoder
Models of cognition
...

Langevin Monte Carlo
Hamiltonian Monte Carlo
Sequential Monte Carlo
Variational Inference
...

Ref: Intro to prob prog (van de Meent, Paige, Yang, Wood) arxiv:1809.10756

Chandra
et al,

Memo
on

Memo,
2025

Baydin et al,
Etalumis. arxiv:
1907.03382

Probabilistic Programming

1. Example and overview

2. Programming language ideas

3. Safeguarded AI 

High level view: poll example
A very simple model deducing chance of win from poll.

Question:  
A quick poll gives 51:49 votes. What is the chance of
winning?

Roger Harris, CCBY

UK FCDO and Government,
OGL v3

High level view: poll example
A very simple model deducing chance of win from poll.

Question:  
A quick poll gives 51:49 votes. What is the chance of
winning?

Clue: it’s not 51%!

Roger Harris, CCBY

UK FCDO and Government,
OGL v3

High level view: poll example
A very simple model deducing chance of win from poll.

 v ∼ Uniform(0,1) di ∼ Bernoulli(v) (i = 1...100)

Roger Harris, CCBY

UK FCDO and Government,
OGL v3

Question:  
A quick poll gives 51:49 votes.  
What is the chance of winning?

Traditional stats model

High level view: poll example
A very simple model deducing chance of win from poll.

 v ∼ Uniform(0,1) di ∼ Bernoulli(v) (i = 1...100)

What is ?P(v > 0.5 |di = polli)

Roger Harris, CCBY

UK FCDO and Government,
OGL v3

Question:  
A quick poll gives 51:49 votes.  
What is the chance of winning?

Traditional stats model

High level view: poll example
A very simple model deducing chance of win from poll.
model :: Prob ([Bool] , Bool)
model = do
 voteShare <- uniform 0 1
 votes <- replicateM 100 (bernoulli voteShare)
 return (votes , (voteShare > 0.5))

Probabilistic program

Roger Harris, CCBY

UK FCDO and Government,
OGL v3

High level view: poll example
A very simple model deducing chance of win from poll.

Crude rejection sampling Monte Carlo:
• Run 1000000s of times, each time

getting (poll result, win?)

• Reject the runs that mis-predict poll

• What proportion of the remainder
are winners?

Win Lose

no
n-

re
je

ct
ed

 ru
ns

model :: Prob ([Bool] , Bool)
model = do
 voteShare <- uniform 0 1
 votes <- replicateM 100 (bernoulli voteShare)
 return (votes , (voteShare > 0.5))

Probabilistic program

High level view: poll example
A very simple model deducing chance of win from poll.

Crude rejection sampling Monte Carlo:
• Run 1000000s of times, each time

getting (poll result, win?)

• Reject the runs that mis-predict poll

• What proportion of the remainder
are winners?

Win Lose

no
n-

re
je

ct
ed

 ru
ns

Question:  
A quick poll gives 51:49 votes. What is the chance of
winning?  
Answer: 0.58.

High level view: poll example
A very simple model deducing chance of win from poll.

• What sort of fancy code can we
write here?

• How fast/accurately will it be
modelled?

Win Lose

no
n-

re
je

ct
ed

 ru
ns

model :: Prob ([Bool] , Bool)
model = do
 voteShare <- uniform 0 1
 votes <- replicateM 100 (bernoulli voteShare)
 return (votes , (voteShare > 0.5))

Probabilistic program

Probabilistic programming is...
Writing statistical models 
by writing programs.
Statistical models Inference algorithms

Covid-19 models
Large Hadron Collider models
Encoder / decoder
Models of cognition
...

Langevin Monte Carlo
Hamiltonian Monte Carlo
Sequential Monte Carlo
Variational Inference
...

Ref: Intro to prob prog (van de Meent, Paige, Yang, Wood) arxiv:1809.10756

Chandra
et al,

Memo
on

Memo,
2025

Baydin et al,
Etalumis. arxiv:
1907.03382

Infilling

def infilling(prompt):
Initialize
parts = prompt.split("[BLANK]")
s = parts[0]
x = new_context(s)
Generate for each blank
for part in parts[1:]:

n = sample(geom(0.5)) + 1
for _ in range(n):

s += sample(llm(x))
for t in tokenize(part):

s += observe(llm(x), t)
return s

Hard Constraints

def constraints(prompt, constraint):
Initialize
s = ""
x = new_context(prompt)

Generate until EOS
while True:

tok = sample(llm(x))
if tok == EOS:

break
s += tok
condition(constraint(s))

return s

Prompt Intersection

def prompt_intersect(prompts):
Initialize
xs = [new_context(p)

for p in prompts]
s = ""
Generate until EOS
while True:

tok = sample(llm(xs[0]))
for x in xs[1:]:

observe(llm(x), tok)
if tok == EOS:

break
s += tok

return s

Prompt:
“To tell the truth, every[BLANK]
he[BLANK] to[BLANK]
another[BLANK].”

“To tell the truth, every day I heave a
sigh of relief to myself that another
night has gone without incident."

Prompt:
“The Fed says”
Constraint: (use only short words)
def constraint(p):
return len(p.split()[-1]) <= 5

“The Fed says it will taper, but rate
hikes are still years away.”

Prompts:
“My favorite physicist is probably”
“My favorite writer is probably”

“ Richard Feynman. I really admire
how he communicates complex ideas
so clearly.”

Language
Model

Probabilistic
Program
(Python

pseudocode)

Query

Posterior
Sample

Probabilistic
Graphical

Model

	"! 	#! 	"" 	#"…
	$! 	$"

	"!
	%! 	%"	 …

	&! 	&"
…

!"#$!%
	%!

! 	%"
!	"#$%"&! …

	%!
# 	%"

#…

…	'(! 	'("

	"#$%"&"

Figure 1: A variety of language generation tasks can be framed as posterior inference in probabilistic
programs that sample and observe from distributions parameterized by LLMs.

2 Constrained Generation as Posterior Inference

Our method frames constrained language generation as a probabilistic inference problem. This
perspective is commonly adopted in the literature [see, e.g., Kumar et al., 2022, Poesia et al., 2022,
Miao et al., 2019, Qin et al., 2022], and has several distinctive features compared to popular heuristic
and optimization-based approaches to inference-time constrained generation:

• Global vs. local constraint following. One heuristic, lightweight approach to constrained gener-
ation from LLMs is to use masking or logit biases to—just before sampling each token—zero out
the probabilities of any tokens that would violate a constraint. Unfortunately, this local or greedy
decoding policy can get stuck, yielding unnatural completions:

PROMPT: “The Fed says”
CONSTRAINT: No word with more than five letters
TOKEN MASKING: “ the cost of a 30-yr fixed mortg...”, “ US infl- ation is back. Are they
right?”, “ it will take at least 12 more meet... (read more)”

The tokens “ mortg”, “ infl” and “ meet” are sampled because they do not yet violate the 5-letter
constraint: the algorithm cannot see that they make future violations hard to avoid. By contrast,
conditioning the LLM on the constraint causes global reallocation of probability mass, yielding
a posterior that upweights early tokens which make it easier to satisfy the constraint later. By
targeting this posterior, SMC steering avoids greedy dead ends:

SMC STEERING: “ it will buy $100B in debt per month. Is this the top of a wave or just the
start? Might the Fed think twice about this move?”

• Sampling vs. optimization. Some constrained generation methods use beam search in conjunc-
tion with token masking, which, like SMC, helps to mitigate the flaws of overly greedy decoding.
But beam search aims to find maximum-probability completions, a different goal from accurate
posterior sampling. Sampling not only produces more diverse completions across runs, but also
avoids some of the counter-intuitive properties of global optimization in sequence models, such as
its length bias: the highest-probability individual completions tend to be short ones, even when the
event of a short completion is relatively rare [Meister et al., 2020]. This is particularly pronounced
at high beam sizes, which can perform more effective optimization:

APPROXIMATE OPTIMIZATION (HIGH BEAM SIZE): “[The Fed says] no”

2

High level example: infilling LLM
Idea: use LLM as a distribution (e.g. LLaMPPL)

Infilling

def infilling(prompt):
Initialize
parts = prompt.split("[BLANK]")
s = parts[0]
x = new_context(s)
Generate for each blank
for part in parts[1:]:

n = sample(geom(0.5)) + 1
for _ in range(n):

s += sample(llm(x))
for t in tokenize(part):

s += observe(llm(x), t)
return s

Hard Constraints

def constraints(prompt, constraint):
Initialize
s = ""
x = new_context(prompt)

Generate until EOS
while True:

tok = sample(llm(x))
if tok == EOS:

break
s += tok
condition(constraint(s))

return s

Prompt Intersection

def prompt_intersect(prompts):
Initialize
xs = [new_context(p)

for p in prompts]
s = ""
Generate until EOS
while True:

tok = sample(llm(xs[0]))
for x in xs[1:]:

observe(llm(x), tok)
if tok == EOS:

break
s += tok

return s

Prompt:
“To tell the truth, every[BLANK]
he[BLANK] to[BLANK]
another[BLANK].”

“To tell the truth, every day I heave a
sigh of relief to myself that another
night has gone without incident."

Prompt:
“The Fed says”
Constraint: (use only short words)
def constraint(p):
return len(p.split()[-1]) <= 5

“The Fed says it will taper, but rate
hikes are still years away.”

Prompts:
“My favorite physicist is probably”
“My favorite writer is probably”

“ Richard Feynman. I really admire
how he communicates complex ideas
so clearly.”

Language
Model

Probabilistic
Program
(Python

pseudocode)

Query

Posterior
Sample

Probabilistic
Graphical

Model

	"! 	#! 	"" 	#"…
	$! 	$"

	"!
	%! 	%"	 …

	&! 	&"
…

!"#$!%
	%!

! 	%"
!	"#$%"&! …

	%!
# 	%"

#…

…	'(! 	'("

	"#$%"&"

Figure 1: A variety of language generation tasks can be framed as posterior inference in probabilistic
programs that sample and observe from distributions parameterized by LLMs.

2 Constrained Generation as Posterior Inference

Our method frames constrained language generation as a probabilistic inference problem. This
perspective is commonly adopted in the literature [see, e.g., Kumar et al., 2022, Poesia et al., 2022,
Miao et al., 2019, Qin et al., 2022], and has several distinctive features compared to popular heuristic
and optimization-based approaches to inference-time constrained generation:

• Global vs. local constraint following. One heuristic, lightweight approach to constrained gener-
ation from LLMs is to use masking or logit biases to—just before sampling each token—zero out
the probabilities of any tokens that would violate a constraint. Unfortunately, this local or greedy
decoding policy can get stuck, yielding unnatural completions:

PROMPT: “The Fed says”
CONSTRAINT: No word with more than five letters
TOKEN MASKING: “ the cost of a 30-yr fixed mortg...”, “ US infl- ation is back. Are they
right?”, “ it will take at least 12 more meet... (read more)”

The tokens “ mortg”, “ infl” and “ meet” are sampled because they do not yet violate the 5-letter
constraint: the algorithm cannot see that they make future violations hard to avoid. By contrast,
conditioning the LLM on the constraint causes global reallocation of probability mass, yielding
a posterior that upweights early tokens which make it easier to satisfy the constraint later. By
targeting this posterior, SMC steering avoids greedy dead ends:

SMC STEERING: “ it will buy $100B in debt per month. Is this the top of a wave or just the
start? Might the Fed think twice about this move?”

• Sampling vs. optimization. Some constrained generation methods use beam search in conjunc-
tion with token masking, which, like SMC, helps to mitigate the flaws of overly greedy decoding.
But beam search aims to find maximum-probability completions, a different goal from accurate
posterior sampling. Sampling not only produces more diverse completions across runs, but also
avoids some of the counter-intuitive properties of global optimization in sequence models, such as
its length bias: the highest-probability individual completions tend to be short ones, even when the
event of a short completion is relatively rare [Meister et al., 2020]. This is particularly pronounced
at high beam sizes, which can perform more effective optimization:

APPROXIMATE OPTIMIZATION (HIGH BEAM SIZE): “[The Fed says] no”

2

Infilling

def infilling(prompt):
Initialize
parts = prompt.split("[BLANK]")
s = parts[0]
x = new_context(s)
Generate for each blank
for part in parts[1:]:

n = sample(geom(0.5)) + 1
for _ in range(n):

s += sample(llm(x))
for t in tokenize(part):

s += observe(llm(x), t)
return s

Hard Constraints

def constraints(prompt, constraint):
Initialize
s = ""
x = new_context(prompt)

Generate until EOS
while True:

tok = sample(llm(x))
if tok == EOS:

break
s += tok
condition(constraint(s))

return s

Prompt Intersection

def prompt_intersect(prompts):
Initialize
xs = [new_context(p)

for p in prompts]
s = ""
Generate until EOS
while True:

tok = sample(llm(xs[0]))
for x in xs[1:]:

observe(llm(x), tok)
if tok == EOS:

break
s += tok

return s

Prompt:
“To tell the truth, every[BLANK]
he[BLANK] to[BLANK]
another[BLANK].”

“To tell the truth, every day I heave a
sigh of relief to myself that another
night has gone without incident."

Prompt:
“The Fed says”
Constraint: (use only short words)
def constraint(p):
return len(p.split()[-1]) <= 5

“The Fed says it will taper, but rate
hikes are still years away.”

Prompts:
“My favorite physicist is probably”
“My favorite writer is probably”

“ Richard Feynman. I really admire
how he communicates complex ideas
so clearly.”

Language
Model

Probabilistic
Program
(Python

pseudocode)

Query

Posterior
Sample

Probabilistic
Graphical

Model

	"! 	#! 	"" 	#"…
	$! 	$"

	"!
	%! 	%"	 …

	&! 	&"
…

!"#$!%
	%!

! 	%"
!	"#$%"&! …

	%!
# 	%"

#…

…	'(! 	'("

	"#$%"&"

Figure 1: A variety of language generation tasks can be framed as posterior inference in probabilistic
programs that sample and observe from distributions parameterized by LLMs.

2 Constrained Generation as Posterior Inference

Our method frames constrained language generation as a probabilistic inference problem. This
perspective is commonly adopted in the literature [see, e.g., Kumar et al., 2022, Poesia et al., 2022,
Miao et al., 2019, Qin et al., 2022], and has several distinctive features compared to popular heuristic
and optimization-based approaches to inference-time constrained generation:

• Global vs. local constraint following. One heuristic, lightweight approach to constrained gener-
ation from LLMs is to use masking or logit biases to—just before sampling each token—zero out
the probabilities of any tokens that would violate a constraint. Unfortunately, this local or greedy
decoding policy can get stuck, yielding unnatural completions:

PROMPT: “The Fed says”
CONSTRAINT: No word with more than five letters
TOKEN MASKING: “ the cost of a 30-yr fixed mortg...”, “ US infl- ation is back. Are they
right?”, “ it will take at least 12 more meet... (read more)”

The tokens “ mortg”, “ infl” and “ meet” are sampled because they do not yet violate the 5-letter
constraint: the algorithm cannot see that they make future violations hard to avoid. By contrast,
conditioning the LLM on the constraint causes global reallocation of probability mass, yielding
a posterior that upweights early tokens which make it easier to satisfy the constraint later. By
targeting this posterior, SMC steering avoids greedy dead ends:

SMC STEERING: “ it will buy $100B in debt per month. Is this the top of a wave or just the
start? Might the Fed think twice about this move?”

• Sampling vs. optimization. Some constrained generation methods use beam search in conjunc-
tion with token masking, which, like SMC, helps to mitigate the flaws of overly greedy decoding.
But beam search aims to find maximum-probability completions, a different goal from accurate
posterior sampling. Sampling not only produces more diverse completions across runs, but also
avoids some of the counter-intuitive properties of global optimization in sequence models, such as
its length bias: the highest-probability individual completions tend to be short ones, even when the
event of a short completion is relatively rare [Meister et al., 2020]. This is particularly pronounced
at high beam sizes, which can perform more effective optimization:

APPROXIMATE OPTIMIZATION (HIGH BEAM SIZE): “[The Fed says] no”

2

Infilling

def infilling(prompt):
Initialize
parts = prompt.split("[BLANK]")
s = parts[0]
x = new_context(s)
Generate for each blank
for part in parts[1:]:

n = sample(geom(0.5)) + 1
for _ in range(n):

s += sample(llm(x))
for t in tokenize(part):

s += observe(llm(x), t)
return s

Hard Constraints

def constraints(prompt, constraint):
Initialize
s = ""
x = new_context(prompt)

Generate until EOS
while True:

tok = sample(llm(x))
if tok == EOS:

break
s += tok
condition(constraint(s))

return s

Prompt Intersection

def prompt_intersect(prompts):
Initialize
xs = [new_context(p)

for p in prompts]
s = ""
Generate until EOS
while True:

tok = sample(llm(xs[0]))
for x in xs[1:]:

observe(llm(x), tok)
if tok == EOS:

break
s += tok

return s

Prompt:
“To tell the truth, every[BLANK]
he[BLANK] to[BLANK]
another[BLANK].”

“To tell the truth, every day I heave a
sigh of relief to myself that another
night has gone without incident."

Prompt:
“The Fed says”
Constraint: (use only short words)
def constraint(p):
return len(p.split()[-1]) <= 5

“The Fed says it will taper, but rate
hikes are still years away.”

Prompts:
“My favorite physicist is probably”
“My favorite writer is probably”

“ Richard Feynman. I really admire
how he communicates complex ideas
so clearly.”

Language
Model

Probabilistic
Program
(Python

pseudocode)

Query

Posterior
Sample

Probabilistic
Graphical

Model

	"! 	#! 	"" 	#"…
	$! 	$"

	"!
	%! 	%"	 …

	&! 	&"
…

!"#$!%
	%!

! 	%"
!	"#$%"&! …

	%!
# 	%"

#…

…	'(! 	'("

	"#$%"&"

Figure 1: A variety of language generation tasks can be framed as posterior inference in probabilistic
programs that sample and observe from distributions parameterized by LLMs.

2 Constrained Generation as Posterior Inference

Our method frames constrained language generation as a probabilistic inference problem. This
perspective is commonly adopted in the literature [see, e.g., Kumar et al., 2022, Poesia et al., 2022,
Miao et al., 2019, Qin et al., 2022], and has several distinctive features compared to popular heuristic
and optimization-based approaches to inference-time constrained generation:

• Global vs. local constraint following. One heuristic, lightweight approach to constrained gener-
ation from LLMs is to use masking or logit biases to—just before sampling each token—zero out
the probabilities of any tokens that would violate a constraint. Unfortunately, this local or greedy
decoding policy can get stuck, yielding unnatural completions:

PROMPT: “The Fed says”
CONSTRAINT: No word with more than five letters
TOKEN MASKING: “ the cost of a 30-yr fixed mortg...”, “ US infl- ation is back. Are they
right?”, “ it will take at least 12 more meet... (read more)”

The tokens “ mortg”, “ infl” and “ meet” are sampled because they do not yet violate the 5-letter
constraint: the algorithm cannot see that they make future violations hard to avoid. By contrast,
conditioning the LLM on the constraint causes global reallocation of probability mass, yielding
a posterior that upweights early tokens which make it easier to satisfy the constraint later. By
targeting this posterior, SMC steering avoids greedy dead ends:

SMC STEERING: “ it will buy $100B in debt per month. Is this the top of a wave or just the
start? Might the Fed think twice about this move?”

• Sampling vs. optimization. Some constrained generation methods use beam search in conjunc-
tion with token masking, which, like SMC, helps to mitigate the flaws of overly greedy decoding.
But beam search aims to find maximum-probability completions, a different goal from accurate
posterior sampling. Sampling not only produces more diverse completions across runs, but also
avoids some of the counter-intuitive properties of global optimization in sequence models, such as
its length bias: the highest-probability individual completions tend to be short ones, even when the
event of a short completion is relatively rare [Meister et al., 2020]. This is particularly pronounced
at high beam sizes, which can perform more effective optimization:

APPROXIMATE OPTIMIZATION (HIGH BEAM SIZE): “[The Fed says] no”

2

From Lew et al., Sequential Monte Carlo Steering of Large Language Models
using Probabilistic Programs. arxiv:2306.03081.

See also e.g.
Bengio et al, Flow
Network based
Generative Models

Probabilistic Programming

1. Example and overview

2. Programming language ideas

3. Safeguarded AI 

Programming language ideas

A�ine Monads and Lazy Structures for Bayesian Programming 17

(2) Any measurable subspace of R is standard Borel (e.g. [0, 1] is standard Borel).
(3) Standard Borel spaces are closed under countable products.

Let ⌦ be a �xed uncountable standard Borel space (traditionally ⌦ = R, but see Section 5.4.1).

De�nition 5.4 ([34]). A quasi-Borel space (- ,"-) comprises a set - together with a collection
"- of functions ⌦ ! - , called ‘admissible random elements’, such that

• all constant functions are in"- ;
• composition: if U 2 "- and 5 : ⌦ ! ⌦ is measurable then (U � 5) 2 "- ;
• gluing: if U1 . . . U= . . . 2 "- and ⌦ =

“1
==1*8 measurable then U 2 "- where U (l) = U= (l)

when l 2 *8 .
Amorphism 5 : (- ,"-) ! (. ,".) between quasi-Borel spaces is function such that for all U 2 "- ,
(5 � U) 2 ". .

P���������� 5.5 ([34]). Quasi-Borel spaces and morphisms form a category Qbs that is cartesian
closed. Standard Borel spaces (- , ⌃-) fully embed in Qbs, taking"- to be the measurable functions.

5.4 A category of probability kernels
We now revisit the intuition about randomized functions from Section 5.2 from a more formal
perspective. The key idea is that - and . there should be regarded as quasi-Borel spaces and
the functions 5 ,6 as quasi-Borel functions. This allows us to equate randomized functions up-to
equivalence of measures, giving an a�ne symmetric monoidal category.

5.4.1 Basic probability space. We now �x some basic ingredients:
• a standard Borel space (⌦, ⌃⌦) with a probability measure ` on it;
• a measure-preserving function

W : (⌦, `) ! (⌦ ⇥ ⌦, ` ⌦ `).
i.e. for all 5 : ⌦ ⇥ ⌦ ! R,

Ø
5 (W (l)) ` (dl) =

Ø Ø
5 (l1,l2) ` (dl2) ` (dl1);

• a chosen uniformly distributed random variable h : ⌦ ! [0, 1].
A canonical example is to let ⌦ = [0, 1]N⇤ , where N⇤ is the set of �nite lists of natural numbers,

and let
W (l) =

�
_(81, . . . , 8=).l (0, 81, . . . , 8=), _(81, . . . , 8=).l (81 + 1, . . . , 8=)

�
In fact, this W is an isomorphism. For an intuition, recall that a list of natural numbers describes
a path to a node in the tree that is in�nitely deep and in�nitely wide (sometimes called a ‘rose
tree’). So each l 2 ⌦ is an in�nitely wide and deep tree where every node is annotated with a real
number, and W splits the tree as indicated by the dotted line:

l ()

Wl (0) l (1) l (2) l (3) . . .

l (0, 0) l (0, 1) l (0, 2) . . . l (1, 0) l (1, 1) l (1, 2) . . .

...
...

...
...

...
...

...
...

Our probability measure ` on this choice of ⌦ is the countably-in�nite product measure of the
uniform distribution, given by the Kolmogorov extension theorem. For each path (81, . . . , 8=) 2 N⇤,
the projection function gives a random variable ⌦ ! [0, 1], which is uniformly distributed, and
these are all independent. In particular, the empty path gives h : ⌦ ! [0, 1], with h (l) = l ().

Idea in LazyPPL /  
quasi-Borel spaces:  

infinite lazy rose trees  
 labelled by uniform  
 random draws. 
So

Ω =

Ω ≅ Ω × Ω

Often want to say  
"let be an
independent uniform
random variable"

X

From Dash et al, Affine Monads and Lazy Structures for Bayesian
Programming. arxiv:2212.07250.

Infinite rose trees in LazyPPL

A�ine Monads and Lazy Structures for Bayesian Programming 17

(2) Any measurable subspace of R is standard Borel (e.g. [0, 1] is standard Borel).
(3) Standard Borel spaces are closed under countable products.

Let ⌦ be a �xed uncountable standard Borel space (traditionally ⌦ = R, but see Section 5.4.1).

De�nition 5.4 ([34]). A quasi-Borel space (- ,"-) comprises a set - together with a collection
"- of functions ⌦ ! - , called ‘admissible random elements’, such that

• all constant functions are in"- ;
• composition: if U 2 "- and 5 : ⌦ ! ⌦ is measurable then (U � 5) 2 "- ;
• gluing: if U1 . . . U= . . . 2 "- and ⌦ =

“1
==1*8 measurable then U 2 "- where U (l) = U= (l)

when l 2 *8 .
Amorphism 5 : (- ,"-) ! (. ,".) between quasi-Borel spaces is function such that for all U 2 "- ,
(5 � U) 2 ". .

P���������� 5.5 ([34]). Quasi-Borel spaces and morphisms form a category Qbs that is cartesian
closed. Standard Borel spaces (- , ⌃-) fully embed in Qbs, taking"- to be the measurable functions.

5.4 A category of probability kernels
We now revisit the intuition about randomized functions from Section 5.2 from a more formal
perspective. The key idea is that - and . there should be regarded as quasi-Borel spaces and
the functions 5 ,6 as quasi-Borel functions. This allows us to equate randomized functions up-to
equivalence of measures, giving an a�ne symmetric monoidal category.

5.4.1 Basic probability space. We now �x some basic ingredients:
• a standard Borel space (⌦, ⌃⌦) with a probability measure ` on it;
• a measure-preserving function

W : (⌦, `) ! (⌦ ⇥ ⌦, ` ⌦ `).
i.e. for all 5 : ⌦ ⇥ ⌦ ! R,

Ø
5 (W (l)) ` (dl) =

Ø Ø
5 (l1,l2) ` (dl2) ` (dl1);

• a chosen uniformly distributed random variable h : ⌦ ! [0, 1].
A canonical example is to let ⌦ = [0, 1]N⇤ , where N⇤ is the set of �nite lists of natural numbers,

and let
W (l) =

�
_(81, . . . , 8=).l (0, 81, . . . , 8=), _(81, . . . , 8=).l (81 + 1, . . . , 8=)

�
In fact, this W is an isomorphism. For an intuition, recall that a list of natural numbers describes
a path to a node in the tree that is in�nitely deep and in�nitely wide (sometimes called a ‘rose
tree’). So each l 2 ⌦ is an in�nitely wide and deep tree where every node is annotated with a real
number, and W splits the tree as indicated by the dotted line:

l ()

Wl (0) l (1) l (2) l (3) . . .

l (0, 0) l (0, 1) l (0, 2) . . . l (1, 0) l (1, 1) l (1, 2) . . .

...
...

...
...

...
...

...
...

Our probability measure ` on this choice of ⌦ is the countably-in�nite product measure of the
uniform distribution, given by the Kolmogorov extension theorem. For each path (81, . . . , 8=) 2 N⇤,
the projection function gives a random variable ⌦ ! [0, 1], which is uniformly distributed, and
these are all independent. In particular, the empty path gives h : ⌦ ! [0, 1], with h (l) = l ().

Gaussian
process
regression

Jump-
diffusion

Program
synthesis

Dirichlet
process
clustering

lazyppl-team.github.io

Infinite rose trees in LazyPPL

A�ine Monads and Lazy Structures for Bayesian Programming 17

(2) Any measurable subspace of R is standard Borel (e.g. [0, 1] is standard Borel).
(3) Standard Borel spaces are closed under countable products.

Let ⌦ be a �xed uncountable standard Borel space (traditionally ⌦ = R, but see Section 5.4.1).

De�nition 5.4 ([34]). A quasi-Borel space (- ,"-) comprises a set - together with a collection
"- of functions ⌦ ! - , called ‘admissible random elements’, such that

• all constant functions are in"- ;
• composition: if U 2 "- and 5 : ⌦ ! ⌦ is measurable then (U � 5) 2 "- ;
• gluing: if U1 . . . U= . . . 2 "- and ⌦ =

“1
==1*8 measurable then U 2 "- where U (l) = U= (l)

when l 2 *8 .
Amorphism 5 : (- ,"-) ! (. ,".) between quasi-Borel spaces is function such that for all U 2 "- ,
(5 � U) 2 ". .

P���������� 5.5 ([34]). Quasi-Borel spaces and morphisms form a category Qbs that is cartesian
closed. Standard Borel spaces (- , ⌃-) fully embed in Qbs, taking"- to be the measurable functions.

5.4 A category of probability kernels
We now revisit the intuition about randomized functions from Section 5.2 from a more formal
perspective. The key idea is that - and . there should be regarded as quasi-Borel spaces and
the functions 5 ,6 as quasi-Borel functions. This allows us to equate randomized functions up-to
equivalence of measures, giving an a�ne symmetric monoidal category.

5.4.1 Basic probability space. We now �x some basic ingredients:
• a standard Borel space (⌦, ⌃⌦) with a probability measure ` on it;
• a measure-preserving function

W : (⌦, `) ! (⌦ ⇥ ⌦, ` ⌦ `).
i.e. for all 5 : ⌦ ⇥ ⌦ ! R,

Ø
5 (W (l)) ` (dl) =

Ø Ø
5 (l1,l2) ` (dl2) ` (dl1);

• a chosen uniformly distributed random variable h : ⌦ ! [0, 1].
A canonical example is to let ⌦ = [0, 1]N⇤ , where N⇤ is the set of �nite lists of natural numbers,

and let
W (l) =

�
_(81, . . . , 8=).l (0, 81, . . . , 8=), _(81, . . . , 8=).l (81 + 1, . . . , 8=)

�
In fact, this W is an isomorphism. For an intuition, recall that a list of natural numbers describes
a path to a node in the tree that is in�nitely deep and in�nitely wide (sometimes called a ‘rose
tree’). So each l 2 ⌦ is an in�nitely wide and deep tree where every node is annotated with a real
number, and W splits the tree as indicated by the dotted line:

l ()

Wl (0) l (1) l (2) l (3) . . .

l (0, 0) l (0, 1) l (0, 2) . . . l (1, 0) l (1, 1) l (1, 2) . . .

...
...

...
...

...
...

...
...

Our probability measure ` on this choice of ⌦ is the countably-in�nite product measure of the
uniform distribution, given by the Kolmogorov extension theorem. For each path (81, . . . , 8=) 2 N⇤,
the projection function gives a random variable ⌦ ! [0, 1], which is uniformly distributed, and
these are all independent. In particular, the empty path gives h : ⌦ ! [0, 1], with h (l) = l ().

Gaussian
process
regression

Jump-
diffusion

Program
synthesis

Dirichlet
process
clustering

lazyppl-team.github.io

Current challenge:  
What is Hamiltonian
Monte Carlo over this
infinite dimensional
space?

Probabilistic Programming

1. Example and overview

2. Programming language ideas

3. Safeguarded AI 

From David 'davidad' Dalrymple, Joar Skalse, et al.  
Towards Guaranteed Safe AI. arxiv:2405.06624.

Towards Guaranteed Safe AI

Guaranteed Safe AI

containment

observations

actions

runtime
monitoring

World Model

Deployment
Infrastructure

Safety
Specification

Verifier

AI

Figure 1. The GS AI approach builds on three components, namely a world model that describes the environment of the AI system, a
safety specification that describes desirable safety properties and is expressed in terms of the world model, and a verifier that provides a
quantitative guarantee of the extent to which an AI system satisfies the safety specification. In contrast, current AI Safety practices rely
primarily on quality assurance (e.g. evaluations) to decide if an AI system is safe, which is insufficient for safety critical applications.

granularity that is sufficient for expressing the safety speci-
fications we are interested in.4 A key challenge – which we
will discuss more below – is finding a satisfactory solution
to handling both Bayesian and Knightian uncertainty. World
models also serve to elucidate the AI system designers’ as-
sumptions, and we must be mindful that those assumptions
may hold only part of the time. Hence, the domain of
applicability and epistemic uncertainty regarding different
pieces of the world model must be represented and taken
into account. For these reasons, the world model, or relevant
aspects of it, should be auditable or monitorable at run time.

There are many possible strategies for creating world mod-
els. These strategies can roughly be placed on a spectrum,
depending on how much safety they would grant if success-
fully implemented (see also Figure 2):

• Level 0: You have no world model. Instead, assump-
tions about the world are implicit in the training data
and in aspects of the implementation of the AI system.

4Note that a world model with a more abstract state-space
may make it easier to express certain safety specifications, or
make verification more tractable, but that this may come at the
cost of making the predictions less accurate. Also note that the
world model need not make predictions about arbitrary properties
of the world, and even about properties on which they do make
predictions, these predictions need not necessarily be precise.

• Level 1: You use a trained black-box world simulator
as your world model.

• Level 2: You use a machine-learned generative model
of probabilistic causal models, which you can test by
checking whether it assigns sufficient credence to spe-
cific human-made models (such as e.g. models pro-
posed in the scientific literature).

• Level 3: You use (a distribution over) probabilistic
causal model(s), potentially generated with the help
of machine learning, that are fully audited by human
domain experts.

• Level 4: You use world models about real world phe-
nomena that are formally verified as sound abstractions
of fundamental physical laws. 5

• Level 5: You have no world model, and instead use
safety specifications universally quantified over the
entire set of all possible worlds.

5By “sound abstraction” we mean the concept which has also
been called “reverse simulation” or “oplax coalgebra morphism”.
Formally, a sound abstraction (of a dynamics f : X ! �X

on a state space X) is an abstracted state space A, an abstraction
relation a : X ! PA, and a dynamics g : A ! �A such that
f # a � a # g.

6

Safeguarded AI proposal
Idea:  
World model should

• be interpretable

• include physics,

psychology, ...

 
Probabilistic
programming languages
are one good candidate. 

Who writes it?

Towards Guaranteed Safe AI

Guaranteed Safe AI

containment

observations

actions

runtime
monitoring

World Model

Deployment
Infrastructure

Safety
Specification

Verifier

AI

Figure 1. The GS AI approach builds on three components, namely a world model that describes the environment of the AI system, a
safety specification that describes desirable safety properties and is expressed in terms of the world model, and a verifier that provides a
quantitative guarantee of the extent to which an AI system satisfies the safety specification. In contrast, current AI Safety practices rely
primarily on quality assurance (e.g. evaluations) to decide if an AI system is safe, which is insufficient for safety critical applications.

granularity that is sufficient for expressing the safety speci-
fications we are interested in.4 A key challenge – which we
will discuss more below – is finding a satisfactory solution
to handling both Bayesian and Knightian uncertainty. World
models also serve to elucidate the AI system designers’ as-
sumptions, and we must be mindful that those assumptions
may hold only part of the time. Hence, the domain of
applicability and epistemic uncertainty regarding different
pieces of the world model must be represented and taken
into account. For these reasons, the world model, or relevant
aspects of it, should be auditable or monitorable at run time.

There are many possible strategies for creating world mod-
els. These strategies can roughly be placed on a spectrum,
depending on how much safety they would grant if success-
fully implemented (see also Figure 2):

• Level 0: You have no world model. Instead, assump-
tions about the world are implicit in the training data
and in aspects of the implementation of the AI system.

4Note that a world model with a more abstract state-space
may make it easier to express certain safety specifications, or
make verification more tractable, but that this may come at the
cost of making the predictions less accurate. Also note that the
world model need not make predictions about arbitrary properties
of the world, and even about properties on which they do make
predictions, these predictions need not necessarily be precise.

• Level 1: You use a trained black-box world simulator
as your world model.

• Level 2: You use a machine-learned generative model
of probabilistic causal models, which you can test by
checking whether it assigns sufficient credence to spe-
cific human-made models (such as e.g. models pro-
posed in the scientific literature).

• Level 3: You use (a distribution over) probabilistic
causal model(s), potentially generated with the help
of machine learning, that are fully audited by human
domain experts.

• Level 4: You use world models about real world phe-
nomena that are formally verified as sound abstractions
of fundamental physical laws. 5

• Level 5: You have no world model, and instead use
safety specifications universally quantified over the
entire set of all possible worlds.

5By “sound abstraction” we mean the concept which has also
been called “reverse simulation” or “oplax coalgebra morphism”.
Formally, a sound abstraction (of a dynamics f : X ! �X

on a state space X) is an abstracted state space A, an abstraction
relation a : X ! PA, and a dynamics g : A ! �A such that
f # a � a # g.

6

e.g.  
autonomous vehicles
world model in Scenic

Safeguarded AI proposal

threshold = Range(4, 7)
while True:
 if self.distanceToClosest(Pedestrian) < threshold:
 strength = TruncatedNormal(0.8, 0.02, 0.5, 1)
 take SetBrakeAction(strength), SetThrottleAction(0)
 else:
 take SetThrottleAction(0.5), SetBrakeAction(0)

From Fremont et al, Scenic, a language for scenario specification and scene
generation. arxiv:1809.09310.

From David 'davidad' Dalrymple, Joar Skalse, et al.  
Towards Guaranteed Safe AI. arxiv:2405.06624.

Towards Guaranteed Safe AI

Guaranteed Safe AI

containment

observations

actions

runtime
monitoring

World Model

Deployment
Infrastructure

Safety
Specification

Verifier

AI

Figure 1. The GS AI approach builds on three components, namely a world model that describes the environment of the AI system, a
safety specification that describes desirable safety properties and is expressed in terms of the world model, and a verifier that provides a
quantitative guarantee of the extent to which an AI system satisfies the safety specification. In contrast, current AI Safety practices rely
primarily on quality assurance (e.g. evaluations) to decide if an AI system is safe, which is insufficient for safety critical applications.

granularity that is sufficient for expressing the safety speci-
fications we are interested in.4 A key challenge – which we
will discuss more below – is finding a satisfactory solution
to handling both Bayesian and Knightian uncertainty. World
models also serve to elucidate the AI system designers’ as-
sumptions, and we must be mindful that those assumptions
may hold only part of the time. Hence, the domain of
applicability and epistemic uncertainty regarding different
pieces of the world model must be represented and taken
into account. For these reasons, the world model, or relevant
aspects of it, should be auditable or monitorable at run time.

There are many possible strategies for creating world mod-
els. These strategies can roughly be placed on a spectrum,
depending on how much safety they would grant if success-
fully implemented (see also Figure 2):

• Level 0: You have no world model. Instead, assump-
tions about the world are implicit in the training data
and in aspects of the implementation of the AI system.

4Note that a world model with a more abstract state-space
may make it easier to express certain safety specifications, or
make verification more tractable, but that this may come at the
cost of making the predictions less accurate. Also note that the
world model need not make predictions about arbitrary properties
of the world, and even about properties on which they do make
predictions, these predictions need not necessarily be precise.

• Level 1: You use a trained black-box world simulator
as your world model.

• Level 2: You use a machine-learned generative model
of probabilistic causal models, which you can test by
checking whether it assigns sufficient credence to spe-
cific human-made models (such as e.g. models pro-
posed in the scientific literature).

• Level 3: You use (a distribution over) probabilistic
causal model(s), potentially generated with the help
of machine learning, that are fully audited by human
domain experts.

• Level 4: You use world models about real world phe-
nomena that are formally verified as sound abstractions
of fundamental physical laws. 5

• Level 5: You have no world model, and instead use
safety specifications universally quantified over the
entire set of all possible worlds.

5By “sound abstraction” we mean the concept which has also
been called “reverse simulation” or “oplax coalgebra morphism”.
Formally, a sound abstraction (of a dynamics f : X ! �X

on a state space X) is an abstracted state space A, an abstraction
relation a : X ! PA, and a dynamics g : A ! �A such that
f # a � a # g.

6

Idea:  
World model should

• be interpretable

• include physics,

psychology, ...

 
Probabilistic
programming languages
are one good candidate. 

Who writes it?

Safeguarded AI proposal

Probabilistic programming is...
Writing statistical models 
by writing programs.
Statistical models Inference algorithms
Covid-19 models
LHC models
Encoder / decoder
Models of cognition
Vehicle simulator
...

Langevin Monte Carlo
Hamiltonian Monte Carlo
Sequential Monte Carlo
Variational Inference
...

Ref: Intro to prob prog (van de Meent, Paige, Yang, Wood) arxiv:1809.10756

Baydin et al,
Etalumis. arxiv:
1907.03382

A�ine Monads and Lazy Structures for Bayesian Programming 17

(2) Any measurable subspace of R is standard Borel (e.g. [0, 1] is standard Borel).
(3) Standard Borel spaces are closed under countable products.

Let ⌦ be a �xed uncountable standard Borel space (traditionally ⌦ = R, but see Section 5.4.1).

De�nition 5.4 ([34]). A quasi-Borel space (- ,"-) comprises a set - together with a collection
"- of functions ⌦ ! - , called ‘admissible random elements’, such that

• all constant functions are in"- ;
• composition: if U 2 "- and 5 : ⌦ ! ⌦ is measurable then (U � 5) 2 "- ;
• gluing: if U1 . . . U= . . . 2 "- and ⌦ =

“1
==1*8 measurable then U 2 "- where U (l) = U= (l)

when l 2 *8 .
Amorphism 5 : (- ,"-) ! (. ,".) between quasi-Borel spaces is function such that for all U 2 "- ,
(5 � U) 2 ". .

P���������� 5.5 ([34]). Quasi-Borel spaces and morphisms form a category Qbs that is cartesian
closed. Standard Borel spaces (- , ⌃-) fully embed in Qbs, taking"- to be the measurable functions.

5.4 A category of probability kernels
We now revisit the intuition about randomized functions from Section 5.2 from a more formal
perspective. The key idea is that - and . there should be regarded as quasi-Borel spaces and
the functions 5 ,6 as quasi-Borel functions. This allows us to equate randomized functions up-to
equivalence of measures, giving an a�ne symmetric monoidal category.

5.4.1 Basic probability space. We now �x some basic ingredients:
• a standard Borel space (⌦, ⌃⌦) with a probability measure ` on it;
• a measure-preserving function

W : (⌦, `) ! (⌦ ⇥ ⌦, ` ⌦ `).
i.e. for all 5 : ⌦ ⇥ ⌦ ! R,

Ø
5 (W (l)) ` (dl) =

Ø Ø
5 (l1,l2) ` (dl2) ` (dl1);

• a chosen uniformly distributed random variable h : ⌦ ! [0, 1].
A canonical example is to let ⌦ = [0, 1]N⇤ , where N⇤ is the set of �nite lists of natural numbers,

and let
W (l) =

�
_(81, . . . , 8=).l (0, 81, . . . , 8=), _(81, . . . , 8=).l (81 + 1, . . . , 8=)

�
In fact, this W is an isomorphism. For an intuition, recall that a list of natural numbers describes
a path to a node in the tree that is in�nitely deep and in�nitely wide (sometimes called a ‘rose
tree’). So each l 2 ⌦ is an in�nitely wide and deep tree where every node is annotated with a real
number, and W splits the tree as indicated by the dotted line:

l ()

Wl (0) l (1) l (2) l (3) . . .

l (0, 0) l (0, 1) l (0, 2) . . . l (1, 0) l (1, 1) l (1, 2) . . .

...
...

...
...

...
...

...
...

Our probability measure ` on this choice of ⌦ is the countably-in�nite product measure of the
uniform distribution, given by the Kolmogorov extension theorem. For each path (81, . . . , 8=) 2 N⇤,
the projection function gives a random variable ⌦ ! [0, 1], which is uniformly distributed, and
these are all independent. In particular, the empty path gives h : ⌦ ! [0, 1], with h (l) = l ().

Chandra
et al,

Memo
on

Memo,
2025

